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Objective
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To support risk-informed decision making by understanding the 
sources of uncertainty, how to estimate it, and proposing methods 
for reducing it

– Design and Development of Complex Launch Vehicles
– Launch Readiness Decisions
– Scenario and System Trade Studies 

• Identify Uncertainty sources

• Estimate parameter uncertainty bounds
– Introduce heuristic and statistical guidelines for Launch Vehicles (LV) to 

apply a consistent method for estimating uncertainty across all LV 
elements

• Apply a standard method for uncertainty reduction



Uncertainty Definition
• A point estimate is a single parameter value that represents an entire population

– Failure data are often provided in reliability databases as point estimates (mean or median)

• Failure rates (1/MTTF) are represented in traditional reliability as point estimates; 
– In Bayesian reliability they are considered random variables that are represented as probability 

distributions

• Parameter uncertainty is measured by the spread of the distribution, which can be 
expressed as the bounds (e.g. 5th and 95th percentiles) of the probability distribution

• Failure rates are often modeled by the lognormal distribution
– Quantitatively, the error factor (EF) is a measure of the spread of uncertainty for the lognormal about 

the Median
– EF = 95th/Median
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Lognormal Probability Density Function



Cont. Uncertainty
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• Two types of uncertainty
– Aleatory (random variability)

• Inherent characteristic of the system, which cannot be reduced 
without improving the system

– Epistemic (lack of knowledge or ignorance) 
• Can be reduced by increasing knowledge 

• Epistemic uncertainty has many sources:
– Completeness (missing scope/scenarios)
– Parameter (component/subsystem)
– Model (assumptions and development)

• This presentation focuses on epistemic uncertainty 
associated with the parameters of reliability models 
developed from available data sources



• New Launch vehicles (LV) comprise heritage and new 
hardware

• Reliability models are often developed from data from 
multiple sources:
– Component databases (NPRD, EPRD, NUCLARR, etc.) 
– Aerospace historical data
– Other industry historical data
– Piece part count method (MIL-HDBK-217F)
– Engineering judgment 

• These data sources reflect different levels of 
applicability to a specific LV
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Parameter Data Sources and 
Applicability 



What is Data Applicability?

• Applicability is the degree of relevance of the source data to the 
LV model

• Data applicability may be a significant source of epistemic 
parameter uncertainty (lack of knowledge), as represented by 
the spread of the lognormal parameter distribution (i.e., the 
Error Factor)
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An approach for quantifying data 
applicability 

• Data source application 
– The purpose of this section of the approach is to use the 

applicability guidelines to apply concsistent uncertainty distribution 
for a mean value (point estimate) with unknown distribution 
information

– Classify the applicability of the data source

– For each data source, quantify its applicability to the system being 
modeled by using a set of heuristic (rule of thumb) guidelines

• Source Environment 
– The purpose of this section of the approach is to estimate the 

epistemic uncertainty associated with converting the failure rate 
from one environment to the other

– Increase the parameter uncertainty due to environmental 
conversion
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Data Source Application Classification
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Source Category Source Descrption Source Application
Source 

Application   
Error Factor

Same component 3

Like component 4

Same component 5

Like component 6

Same component 6

Like component 7

Same component 8

Like component 9

Documented Process 10

Undocumented Process 15

Legacy 
Hardware

A
Other Launch Vehicle Data                         

(Most Applicable)

B Aerospace Data

C

Note: This table is intended to be used for point estimates that lack distribution data. Use the distribution for uncertainty if it is known

Other Industry Data

New 
Hardware

D MIL-HDBK-217F Methods

E
Non-expert Engineering Judgment                                                                  

(Least Applicable)



Example of Applying the Guidelines
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Component Applicability
Mean                                

(Point Estimate)
EF

1
Engineering Judgment 
(Documented Process)

3.00E-06 10

2 Piece Part Method 6.01E-06 8

3
Aerospace Historical data for 

same component
1.00E-06 5

4
Engineering Judgment 

(Undocumented Process)
3.50E-07 15



Estimating Environmental Factors 
Uncertainty

• Reliability data for a particular component operating in a specific 
environment , such as Autonomous Uninhabited Fighter (AUF), may not be 
available for that environment, however, a failure rate for the same 
component may be available from another operating environment, such as 
Missile Launch (ML)

• MIl-HDBK-217F provides environmental tables for converting the provided 
failure rate point estimate from one environment to another, but does not 
estimate the uncertainty associated with this conversion.

• The purpose of this section of the approach is to estimate this source of 
epistemic uncertainty and propagate it to the failure rate prediction

• The calculations carried out to assess this uncertainty relied upon statistics, 
historical data and engineering judgment
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Process to Estimate Environmental 
Factors Uncertainty
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• Process Steps:
– Derive the equation for the environmental conversion factor
– Identify the variables in this equation,
– Generate an uncertainty distribution for each variable, and ;
– Propagate uncertainty to the resulting failure rate through the environmental 

equation using Monte Carlo simulation
• Using the microelectronic part-type example 1, Section 5.13, Paige 5-20 of 

the handbook, the environmental factor (πE) conversion formula was first 
derived from the failure rate (λp) reference
– λ𝑃𝑃 = 𝐶𝐶1𝜋𝜋T + 𝐶𝐶2𝜋𝜋𝐸𝐸 𝜋𝜋𝑄𝑄
– C1 is the circuit complexity, C2 is the packaging complexity
– πT is the component joint temperature factor, πQ is the component quality factor
– πL is the learning factor (assumed 1 by the handbook)

• Solving for πE , the equation becomes

π
𝐸𝐸

=
λ𝑝𝑝

π𝑄𝑄 −
𝐶𝐶1𝜋𝜋T

𝐶𝐶2



Cont. Process to Estimate 
Environmental Factors Uncertainty

• Data availability obstacles 
– The challenge with MIL-HDBK-217F tables was that values for λp, C1, C2, πQ, 

and πT were provided as mean estimates only

• The handbook references yielded distribution information on λp
– But no distribution information on C1, C2, πQ, and πT

• The following engineering assumptions were made based on 
engineering judgement
– Normality was assumed for C1, C2, πQ, and πT distribution. Referenced the 

Probability & Statistics For Engineers & Scientists, Paige 144, 7th Edition by 
Walpole, Myers and Ye 

• “Physical measurements in areas such as meteorological experiments, rainfall studies, and 
measurements of manufactured parts are often more that adequately explained with a 
normal distribution”

– The relationship between the mean and the standard deviation is expressed 
via coefficient of variance (CV)

– CV = standard deviation / mean estimate
– CV was assumed to be 20%
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Cont. Process to Estimate 
Environmental Factors Uncertainty

• References in the MIL-HDBK-217F provided distribution 
information on the λp for the microelectronic part-type

• Data was found for 5 environments (GB, GF, SF, ML, NSB)

• Standard deviation was calculated for each environment 

• The uncertainty propagation for π
𝐸𝐸

=
λ𝑝𝑝

π𝑄𝑄 −
𝐶𝐶1𝜋𝜋T

𝐶𝐶2
was 

estimated using Monte Carlo (MC) simulations
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Cont. Process to Estimate 
Environmental Factors Uncertainty
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• The MC samples in the figure fit the lognormal distribution
• The error factor (a measure of uncertainty for lognormal distribution) for the GB 

𝜋𝜋𝐸𝐸 equation was calculated to be 3 using the formula (EF= 95th/Median)
• GB was selected because the source used it as the reference environment



Process Flow Chart to Reduce 
Uncertainty

Solve the Fault Tree

Collect failure rate data for the components 

Represent the failure rates by lognormal distributions
Use the heuristic to select the appropriate error factor 
for each unique basic event

Run uncertainty analyses (i.e., Monte Carlo)

Run Uncertainty-Importance analyses and determine 
which basic events drive the lower and upper bounds

Reliability Data Collection

Error Factor Assignment               
(Parameter Uncertainty)

Fault Tree Quantification

Uncertainty Analysis Routine 
(e.g., Monte Carlo Simulation)

Satisfactory 
Results?

Uncertainty-Importance 
Analysis 

End
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• This flow chart shows an iterative process using Uncertainty-Importance routines to 
prioritize components for additional data collection or testing to reduce uncertainty



Case Study 
Simple Fault Tree 

• A simple model consists of 4 components 1, 2, 3 and 4 
operating for a duration of 500 sec (0.14 hrs.)

• Component 1 is in series with components 2, 3, and 4
• Components 2, 3, and 4 are connected in a parallel 

configuration

Note: Numbers shown on this slide are examples only and do not represent data from NASA systems



Case Study
Uncertainty Quantification Results

Run1

• Model Error Factor (EF) = 95th/Median = 10.25 

Presenter
Presentation Notes
Restate the following: An EF is a measure of uncertainty



Case Study 
Uncertainty-Importance Analysis

18

• The Uncertainty-importance routine identified component 1 as 
a major driver of the model uncertainty

• A data research to reduce uncertainty on Component 1 
identified more applicable data 
– Found historical data for a like component from the 

aerospace industry



Case Study
Uncertainty Quantification Results

Run2

Model New EF = 95th/ Median = 5.08  vs. Old EF of 10.25 



Conclusion
• Uncertainty represents the spread of the parameter estimate. How certain are we 

that the estimate is correct?
– Useful for decision makers 
– Applicability is a source of uncertainty

• Highly applicable data improves the certainty of model estimates
– Crucial step that increases the credibility of the component’s failure rate estimate

• Translating between environments is an unknown source of epistemic parameter 
uncertainty

• The uncertainty about the environmental factor conversion formula was 
statistically estimated with an error factor of about 3

– Aggregate with the source data applicability to achieve a complete estimate of epistemic uncertainty

• This assessment was made for the GB, GF, SF, ML, and NSB environment for 
microelectronic part-type

• Uncertainty-Importance routines can be a basis for data analysis efforts
– By prioritizing the need to collect additional parameter data 

• Future work will assess other part types and other environments 
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Questions?

POC: Mohammad AL Hassan (Mo) 
Mohammad.i.alhassan@nasa.gov
256-544-2410
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