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“

”

It is unanimously agreed that statistics 
depends somehow on probability. But, as to 
what probability is and how it is connected 
with statistics, there has seldom been such 
complete disagreement and breakdown of 
communication since the Tower of Babel.

Savage, 1954

Bayesian statistics are based on “subjective” rather than 
“objective” probability



Classical View of Probability

• Physical or Objective probability
• Also known as “frequentist probability”

• Description of physical random processes
• Dice

• Roulette Wheels

• Radioactive processes

• Probability as the limiting ratio of repeated occurrences

• Philosophically  --- Popper, von Mises, etc. 



Subjective Probability

• Subjective or Evidential 
• Also called “Bayesian” probability

• Assessment of uncertainty 

• Plausibility of possible outcomes
• May be applied to uncertain but fixed quantities

• Bayes analysis treats unknown parameters as random 

• Sometimes elucidated in terms of wagers on outcomes

• Philosophically --- de Finetti, Savage, Carnap, etc. 



Note on Notation

• Samples:   X for either single or multiple samples

• Distributions:   
• p(X) for either discrete or continuous

• N(µ, σ2) for normal with mean and variance parameters (sometimes φ)

• Parameters:   
• For binomial examples, π is population proportion of success

• For continuous case, it is simply π



Likelihood Principle
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Binomial, n=20

If X = 8 is observed, which Binomial is more likely to have produced? • Example: X=8 --- source?

• b(8:0.4, 20) = 0.18

• b(8;0.2, 20) = 0.02

• Either possible 

• First more likely



Likelihood (Discrete Sample) 

• Likelihood function 𝐿 𝜋: 𝑋
• Note: 𝜋 is unknown proportion of success

• Here, sample X is “given”

• Parameter 𝜋 is variable to solve

• Solution is MLE (max. likelihood 
estimator)

𝑥𝑖 = ቊ
1 Success
0 Failure

𝐿 𝜋: 𝑋 =ෑ

𝑖=1

𝑛

𝜋 𝑥𝑖 1 − 𝜋 1− 𝑥𝑖 = 𝜋𝑥 1 − 𝜋 𝑛−𝑥

𝑙 𝜋: 𝑋 = ln 𝐿 𝜋: 𝑋 = 𝑥 ln𝜋 + 𝑛 − 𝑥 ln 1 − 𝜋

𝑑𝑙

𝑑𝜋
= 0

𝑦𝑖𝑒𝑙𝑑𝑠
𝑝 = ෝ𝜋 =

𝑥

𝑛



Likelihood  for continuous

• For sample x = 13

• Normal( 12.5, 4) 
• f(13: 12.5, 4) = 0.19

• Normal (10, 4) 
• f(13: 10, 4) = 0.065



MLE for Continuous (Normal)

• Multiple samples (n)

• Likelihood  L 

• Parameters chosen to max L 
using Ln L 

• Estimation (MLE)

𝐿 𝜇, 𝜎2: 𝑋 =ෑ

𝑖=1

𝑛
𝑒− Τ𝑥𝑖−𝜇

2 2𝜎2

2𝜋𝜎2

𝑙 𝜇, 𝜎2: 𝑋 = ln 𝐿 𝜇, 𝜎2: 𝑋 = −
𝑛

2
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𝑛

2
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1

2𝜎2
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2

𝑑𝑙

𝑑𝜇
= 0 Ƹ𝜇 = ҧ𝑥

𝑑𝑙

𝑑𝜎2
= 0 ො𝜎2 =

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

𝑛
=
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Classical Statistics: Summary

• Theory is well developed
• E.g., most cases asymptotically unbiased and normal 

• Variance parameters based on log likelihood derivatives

• Confidence Intervals 
• Confidence level means ?

• Hypothesis Tests
• Pesky p-value



“

”

There’s no theorem like Bayes’ theorem
Like no theorem we know
Everything about it is appealing
Everything about it is a wow
Let out all that a priori feeling
You’ve been concealing right up to now!

George E. P. Box 

Bayes Theorem useful, controversial (in its day), and the bane of 
introductory probability students. Sometimes known as “inverse 
probability”



Bayes Theorem I: Sets and Partition of S

• Consider a sample space S

• Event 𝐵 ⊂ 𝑆

• Partition of sample space 𝐴1, 𝐴2, … , 𝐴𝑘
• Exhaustive

• Mutually exclusive 

• Decomposition of B into subsets 𝐵 ∩ 𝐴𝑖

• By Axioms of probability

𝑆 = 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑘
𝐴𝑖 ∩ 𝐴𝑗 = ∅

𝐵 = 𝐵 ∩ 𝑆 = 𝐵 ∩ 𝐴1 ∪ 𝐵 ∩ 𝐴2 ∪⋯∪ 𝐵 ∩ 𝐴𝑘

𝑃 𝐵 =෍

𝑖=1

𝑘

𝑃(𝐵 ∩𝐴𝑖)



Bayes Theorem II: Conditional Probability

• Conditional probability

• Multiplication rule

• Total probability

𝑃 𝐵 𝐴𝑖 =
)𝑃(𝐴𝑖 ∩ 𝐵

)𝑃(𝐴𝑖

𝑃 𝐴𝑖 ∩ 𝐵 = 𝑃 𝐴𝑖 𝑃 𝐵 𝐴𝑖

𝑃 𝐵 =෍

𝑖=1

𝑘

𝑃(𝐵 ∩𝐴𝑖) =෍

𝑖=1

𝑘

)𝑃 𝐴𝑖 𝑃(𝐵|𝐴𝑖



Bayes III: The Theorem

• Direct result of previous 
definitions
• Multiplication rule

• Total Probability

• Conditionals are “reversed” or 
“inverted”

𝑃 𝐴𝑖 𝐵 =
)𝑃(𝐴𝑖 ∩ 𝐵

)𝑃(𝐵
=

)𝑃 𝐴𝑖 𝑃(𝐵|𝐴𝑖

σ𝑖=1
𝑘 )𝑃 𝐴𝑖 𝑃(𝐵|𝐴𝑖



Quick Bayes Theorem Example

• Let C = “conforming”

• A part is sampled, 
tested, and found to be 
conforming: 𝑃 𝐴3 𝐶 = ?

Vendor
P(C|Vendor)

(%)

Vendor 

Proportion 

(%)

A1 88 30

A2 85 20

A3 95 50



Bayes Statistical Formulation

• Parameter θ uncertainty

• Prior distribution 𝑝(𝜃)

• Conditional on sample: Likelihood

• Posterior distribution 𝑝 𝜃 𝑋

• Posterior proportional to numerator

𝑝 𝜃 𝑋 =
)𝐿 𝜃 𝑋 𝑝(𝜃

)𝑝(𝑋

𝑝 𝑋 =

෍

𝐴𝑙𝑙 𝑖

)𝐿 𝜃𝑖 𝑋 𝑝(𝜃𝑖 Discrete case

න𝐿 𝜃 𝑋 𝑝 𝜃 d𝜃 Continuous Case

)𝑝 𝜃 𝑋 ∝ 𝐿 𝜃 𝑋 𝑝(𝜃



Proportionality

• Denominator 
• Complex

• A constant

• Key information is numerator

• Standardize numerically if needed

• Bayes methods frequently 
computer intensive

)𝑝 𝜃 𝑋 ∝ 𝐿 𝜃 𝑋 𝑝(𝜃

𝑝 𝜃 𝑋 =
)𝐿 𝜃 𝑋 𝑝(𝜃

)𝑝(𝑋



Updating Posterior

• Two independent samples X, Y

• Posterior from X is prior to Y

• Updated posterior 

𝑝 𝜃 𝑋 =
)𝐿 𝜃 𝑋 𝑝(𝜃

)𝑝(𝑋

𝑝 𝜃 𝑋, 𝑌 =
𝐿 𝜃 𝑌 𝑝 𝜃 𝑋

)𝑝(𝑌
=

)𝐿 𝜃 𝑌 𝐿 𝜃 𝑋 𝑝(𝜃

)𝑝 𝑌 𝑝(𝑋



High Density Intervals (HDI)

• Summarizing Posterior Distribution

• High Density Intervals

• Probability content (e.g., 95%)

• Region with largest density values
• Similar for symmetric (e.g., normal)

• May differ for skewed (e.g., Chi-squared) 

• Special tables may be required

• Source: Krusche, p. 41

• Special tables for HDI (e.g., inverse log 
F) 



Bayes Analysis: Binomial Sample (Beta prior)

• Estimating proportion of success π

• Noted: Likelihood 

• What prior? Beta distribution is 
typical

𝑥𝑖 = ቊ
1 Success
0 Failure

𝐿 𝜋: 𝑋 =ෑ

𝑖=1

𝑛

𝜋 𝑥𝑖 1 − 𝜋 1− 𝑥𝑖 = 𝜋𝑥 1 − 𝜋 𝑛−𝑥



Beta Prior for Proportion Success

• Uncertainty about proportion success 
(π)

• Similarity to likelihood

• “Uninformative” prior 

𝑝 𝜋 =
𝜋𝛼−1 1 − 𝜋 𝛽−1

)𝐵(𝛼, 𝛽

𝐵 𝛼, 𝛽 =
)Γ α Γ(β

)Γ(𝛼 + 𝛽



Beta Prior for Proportion Success

• Mean and variance formulas

E Π =
𝛼

𝛼 + 𝛽

Var(Π) =
𝛼𝛽

𝛼 + 𝛽 2 𝛼 + 𝛽 + 1



Example: Small Poll

• Prior
• “Worth” sample 20

• Estimated Mean  25%

• Sample
• Sample size 100

• Vote favorable  40 (40%)

𝛼0 = 𝜋0 𝑛0
𝛽0 = 1 − 𝜋0 𝑛0

𝜋0 =
𝛼0

𝛼0 + 𝛽0

𝜋1 =
𝑥 + 𝛼0

𝑛 + 𝛼0 + 𝛽0
=
𝑥

𝑛

𝑛

𝑛 + 𝛼0 + 𝛽0
+

𝛼0
𝛼0 + 𝛽0

𝛼0 + 𝛽0
𝑛 + 𝛼0 + 𝛽0



Conjugate Priors

• Prior / Posterior distributions that 
are similar

• Conjugate: Posterior/Prior same 
form

• Identification of distributional 
constants simplified

𝑝 𝜋 ~𝜋𝛼−1 1 − 𝜋 𝛽−1

𝐿 𝜋: 𝑋 = 𝜋𝑥 1 − 𝜋 𝑛−𝑥

𝑝 𝜋|𝑋 ~𝜋𝛼+𝑥−1 1 − 𝜋 𝛽+𝑛−𝑥−1



Simple Normal-Normal Case for Mean

• Simplified Case
• Fixed variance 

• Mean 𝜇 has prior parameters 𝜇0, 𝜑0

• Derivation steps omitted (Ref: Lee)

)𝜇 ~ 𝑁(𝜇0, 𝜑0
)𝑥 ~ 𝑁(𝜇, 𝜑

𝑝(𝜇|𝑥) ∝ exp −
𝜇2 𝜑0

−1 + 𝜑−1

2
+ 𝜇

𝜇0
𝜑0

+
𝑥

𝜑



Results: Normal-Normal

• Summarized results

• Posterior mean weighted value

𝜑1 =
1

𝜑0
−1 + 𝜑−1

𝜇1 = 𝜑1
𝜇0
𝜑0

+
𝑥

𝜑

𝜇 ~ 𝑁(𝜇1, 𝜑1)
𝑥 ~ 𝑁(𝜇, 𝜑)

𝜇1 = 𝜇0
𝜑0
−1

𝜑0
−1 + 𝜑−1

+ 𝑥
𝜑−1

𝜑0
−1 + 𝜑−1



Example: Carbon Dating I

• Ennerdale granophyre

• Earliest dating: K/Ar in 60’s, 70’s

• Prior:  370 M-yr, ±20 M-yr

• Later Rb/Sr 421 ±8 (M-yr)

• Posterior estimate



Carbon Dating II

• Substitute Alternative Expert Prior

• 400 M-yr, ±50 M-yr

• Revised posterior

• Note posterior roughly same



Normal-Normal (Multiple Samples)

• Similar arrangement

• Multiple samples

• Variances are constant

𝜇 ~ 𝑁(𝜇0, 𝜑0)
𝑥𝑖 ~ 𝑁(𝜇, 𝜑)

𝐿(𝜇|𝑥) ∝ exp( −
𝜇2 𝜑0

−1 + 𝑛𝜑−1

2
+ 𝜇

𝜇0
𝜑0

+
σ𝑥𝑖
𝜑



Results: Multiple Samples

• Similar analysis

• As n increases, posterior 
converges to ҧ𝑥

𝜑1 =
1

𝜑0
−1 + 𝑛𝜑−1

𝜇1 = 𝜑1
𝜇0
𝜑0

+
ҧ𝑥

𝜑/𝑛

𝜇 ~ 𝑁(𝜇1, 𝜑1)
𝑥 ~ 𝑁(𝜇, 𝜑/𝑛)

𝜇1 = 𝜇0
𝜑

𝜑 + 𝑛𝜑0
+ ҧ𝑥

𝑛𝜑0
𝜑 + 𝑛𝜑0



Example: Men’s Fittings

• Modified from Lee (p. 46)

• Experience: Chest measurement N(38, 9)

• Shop data 39.8, ±2 on n = 890 samples



Normal: Prior in Variance

• Default prior in mean uniform

• Improper for infinite range

• Variance
• Uniformity in value (like mean)?

• Transform: uniform in log φ

• Conjugate prior in Variances
• Inverse Chi-squared distribution

𝑝 𝜑 =
1

𝜑

𝑝 𝜑 ∝ 𝜑−
𝜈
2
−1ex p −

𝑆0
2𝜑

𝑝 𝜑|𝑋 ∝ 𝜑−
𝜈+𝑛
2

−1exp −
𝑆0 + 𝑆

2𝜑



Conjugate Prior for Normal Variance

• Inverse chi-squared 
distribution

• Exact match not critical 
(likelihood will dominate)

𝜑 ~ 𝑆0 𝜒𝜐
−2

𝐸 𝜑 =
𝑆0

𝜈 − 2

Var 𝜑 =
2𝑆0

2

𝜈 − 2 2 𝜈 − 4



General Approach Hypothesis Tests

• Hypothesis Tests: Choice between 
two alternatives 

• Alternatives disjoint and exhaustive 
of course

• Priors

• Posterior 

𝐻0: 𝜃 ∈ Θ0 𝐻1: 𝜃 ∈ Θ1

𝜋0 = 𝜃 ∈ Θ0 𝜋1 = 𝜃 ∈ Θ1

)𝑝0 = 𝑃(𝜃 ∈ Θ0|𝑋 )𝑝1 = 𝑃(𝜃 ∈ Θ1|𝑋

𝜋0 + 𝜋1 = 1 𝑝0 + 𝑝1 = 1



Hypothesis Tests --- General

• Prior “odds”

• Posterior “odds” 

• Bayes Factor B
• Odds favoring 𝐻0 against 𝐻1

• Two simple alternatives
• Larger B denotes favor for 𝐻0

𝜋0
𝜋1

=
𝜋0

1 − 𝜋0

𝑝0
𝑝1

=
𝑝0

1 − 𝑝0

𝐵 =

𝑝0
𝑝1
𝜋0
𝜋1

𝐵 =
)𝑝(𝑋|𝜃0
)𝑝(𝑋|𝜃1



Summary and Conclusion

• Bayesian estimation 
• Since parameters random, provides probability statements about values

• Provides mechanism for non-sample information

• Avoids technical difficulties with likelihood along

• More advanced analysis computationally intensive
• Tied to computer software

• Open source R with application BUGS

• Machine learning heavily dependent on Bayesian methods
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