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What Is a-Stochastic Process?

A mathematical representation of a system that
evolvesover time, subject torandom variation.

Thestate of the system at a given time is captured by
random variabley or ®(0)

Stochastic processes can evolve iIn:
Discretetime & h ¢ riplt 8
Continuoustime G O ho Tt
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Examples of Stochastierocesses

Stockprice at closing of tradingay

Stock price at any givetime

Inventoryof multiple items athe end of each day
Traffic in a website at any given time

Failure stateof acomponentat any givertime

Failure state obeveralcomponent at any givetime
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Applications-of-Stochastic Process

. Revenue management
- Inventoryplanning

" T T Cdedxdedgine
. Call center staffing
- Derivatives pricing

- Reliability, availability and maintainability
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Defining a-Stochastic Process

. States
BWhat are the states the system can occupy?

. Events

BWhat can happen in the system that triggers a
change in the state?

- Probabilities
BWhat are the odds of events happening?
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MarkovChains

Markov chains are a class of stochastic proce:

MCs have a discrete (countable) state space
Finite
Or infinite

E.g.{rip}Rdharegh riple fof8 Hs

MCs can evolve In
Discrete time
Continuous time
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MarkovChains
- #0 EAOA OEA O- AOET O
0{O  DIOA O o) 00 1)]M0))

Inwords, thefuture only depends on the
presentand not on thepast.

In continuous time MCs, times between event:
follow anexponential distribution .
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The iIExponentiabDistribution
- If random variableois exponential, then:
Bo{® O Q
BOw -
Bo{® O il® i} o{® & 0Q
BThis is called thenemorylessnessproperty.
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MarkovChains Dynamics

The MC starts out at each stal@ “Ywith
probabilityw Qat timeo 18

The MCremainsat state (or an exponentially
distributed amount of time, with parameter .

After that the MCtransitions to a new stateQ
with each state(¥ “Yhaving a transition

probabilityn .
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Defining aMarkov Chain

- State space:Y
BAIl possible states the system can occupy

- Initial distribution vectorio
Bai) Probability that the system is at stafeato Tt

. Generator matrixD

. =r‘_] .,Qn@ '?‘Q
Bou OR () 7Q
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Transition/Diagrams{for’MC

- A graph where:
BThe nodes are eadhN 3
BThearcsareeach n 1 "Q @@AQ Y

. Example )
BY {pft}
B_ {plp & @ @
. ™ 1@
Bu (Tl& T@) c
BO ( e mﬂ))
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Measures of Performance

- N (0)dProbability of being in staté at time o
BlIn vector form ©

- " dlong-run average probabilitgpf beingin
state
Bln vector form:

- 0 "Y"gAverage time until absorption
B2 Al AOAT O xEAT OEAOA EO
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Transient’/Analysis

. The objective is to calculate 0 for someo

(09
£A

0(O) »OiQ ©t|O
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Steady-state analysis

- The objective Is to computé

. Solve the following system of equations

) TT
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Mean Time 7o Absorption

We can calculate MTTA as

L "Y'YO o

Whereo is the set of absorbent states, are
non-absorbent stateando” o0 Y

And where
Q n (0Qo
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EXAMPLES OFMARKOV
CHAINIMODELS FOR
RELIABILITY SAVAILABILITY
AND MAINTAINABILITY
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Two-state Component

Consider a single component that fails at a
constant hazard rate. Assume that repairs
occur at a rate 8

What is the probability that the component will be
working in 1000 hours?

What is the longrun availability of the component?
What is the expected time to the first failure?
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Two-state Component

. State space’Y 0 HQé¢ 0 &

- Transition diagram:

)T EOEAT OOAOAd OODS
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Two-state Component

- The probability of being in each state afteis:

N (9 - ——at )
o — —-0ot )
. Therefore

e © ¢ —
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N parallel.components /with

shared repairs

. Consider a system with N identical component
in parallel, which fait a constantate _.
Assume that repairs occume at a time ah rate
", per repair. There is only one repair resource
BWhat is the longrun availability of thesystem?

BOn average how many components are operational

il

.

A
N e
N
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N parallel.components /with

shared repairs
. State = Number of working components

A4

. State space’Y Tiplth8 hj

- Transition diagram:

O6_ 0 p_ U ¢_ o C_ _

olIo1CMENEo]010

Daniel F. Silva, { IIIIIIIIII

silva@auburn.edu

)2
e
LN
2




N parallel.components /with

shared repairs
. Balance equations

. Normalization:

. Then,

6 0 OQA O WA QO @ ( A )

% AUBURN
Daniel F. Silva, { IIIIIIIIII
silva@auburn.edu

77,
(A
L




N parallel.components /with

shared repairs
- For example for

T8t pi'Q h R h 0 v

i‘)t‘)(b"Qdd')J)ﬁQd‘"Qc‘)mb( —) W@ 0 C

gu N Qi wo]Q¢ éérba—‘éA ‘ & @
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Workstation-Fileserver

Consider a system with 2 identical workstation
and one fileserver, connected by a network.

The system Is operational as long as:

At least 1 workstation is up
The fileserver is up

File Server

Computer Network

Workstation 1 Workstation 2
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Workstation-Fileserver

Assuming exponentially distributed times to
failure

/- fallure rate of workstation
/. failure rate of fileserver
Assume that components are repairable
m,: repair rate of workstation
/. repair rate of fileserver

Shares repairs. FHserverhas priority for repair

over workstations
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Workstation-Fileserver

State = (Numbenbf operational workstations,
number of operational fileservers)

Y (¢p)Npp)Nrip)NcIN(pimh i
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Workstation-Fileserver

Transition diagram:
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Workstation-Fileserver

Long run average Availability
00 WA WwWQa QoW

Example:
/,,=0.0001h",/, =0.00005h%, m; =1.0h™*, m =0.5h™"

Then
00 MU ® WMRANIQAOWL
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Workstation-Fileserver

Instantaneous availability
00 NpO@ ni
/,,=0.0001h*,/, =0.00005h*, m, =1.0h™*, m =05h™*

]. I ¥ 1 ]
Inst. Avail. &
0.99998
A(t) 0.99996 -
0.99994 -
0.99992 .
0.9999 —O—0—C——————

0.99988 ;—— 560 80100

Danic Timeé in hours.
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Workstation-Fileserver

- Calculate time until system failure

2l ., TN | :
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Workstation-Fileserver

L QO
/,=00001h"!,/, =0.00005h'}, m, =1.0h"*, m =0.5h?

LYYOqR «q

We can solve ; i ; numerically using
MATLAB as:

ar . NpOQd a5 . npOQO

ThenD "Y'YO p Ww®E 61 | R ——
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Workstation-Fileserver

. Suppose workstations cannot be repaired
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Workstation-Fileserver

L QO
/,=00001h"!,/, =0.00005h'}, m, =1.0h"*, m =0.5h?

LYYOqR «q

We can solve ; i ; numerically using
MATLAB as:

ar . NpOQd a5 . npOQO

ThenD "Y"Y"Oww(m C’) ‘l i 3 AUBURN
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- EXTENSIONS AND/MORE

COMPLEX\WMODELS
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Infinite Markov Chains

Suppose that your system consists of infinitely many
states.

Example: The state represents the number of
components awaiting repair, from an infinite pool.

Some infinitestate MCs are well understood
Traditional queues M/M/1, M/M/c, etc.
So-called quasbirth-death processes.

These kinds of models can be solved by
Analytical methods (for queues)
Matrix-Analytic methods (foquastbirth-death processes).
Fluid approximations to a continuous system
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Pha

Suppose that not all times are exponential

%BAIl Pl A 2APAEO OEI AO A
PHtype distributions allow us to model the holding
times at some states as other distributions.

PH-type distributions use aew MCto model asingle
transition.

Some distributions that can be well approximated by-f
type are:

Erlang

Deterministic

Hyper and Hypoeexponential
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