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What Is a Stochastic Process?

·A mathematical representation of a system that 
evolves over time, subject to random variation.

·The state of the system at a given time is captured by a 
random variable ὢ or ὢὸ

·Stochastic processes can evolve in:

ƁDiscrete-time ὢȟὲ πȟρȟςȣ

ƁContinuous-time ὢὸȟὸ π
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Examples of Stochastic Processes

·Stock price at closing of trading day

·Stock price at any given time

· Inventory of multiple items at the end of each day

·Traffic in a website at any given time

·Failure state of a component at any given time

·Failure state of several component at any given time
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Applications of Stochastic Processes

·Revenue management

· Inventory planning

·'ÏÏÇÌÅȭÓ search engine

·Call center staffing

·Derivatives pricing

·Reliability, availability and maintainability
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Defining a Stochastic Process

·States

ƁWhat are the states the system can occupy?

·Events

ƁWhat can happen in the system that triggers a 
change in the state?

·Probabilities

ƁWhat are the odds of events happening?
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Markov Chains

·Markov chains are a class of stochastic process

·MCs have a discrete (countable) state space Ὓ

ƁFinite

ƁOr infinite

ƁE.g. πȟρȟὥȟὦȟὧȟπȟρȟςȟσȟȣЊ

·MCs can evolve in

ƁDiscrete time

ƁContinuous time
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Markov Chains

·-#Ó ÈÁÖÅ ÔÈÅ Ȱ-ÁÒËÏÖ 0ÒÏÐÅÒÔÙȱȡ

ὖὢὸ ίὢὸȟᶅὸ ὸ ὖὢὸ ίὢὸ

·In words, the future only depends on the 
presentand not on the past.

·In continuous time MCs, times between events 
follow an exponential distribution .
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The Exponential Distribution

·If random variable ὢis exponential, then:

Ɓὖὢ ὸ Ὡ

ƁὉὢ

Ɓὖὢ ὸ ίὢ ί ὖὢ ὸ Ὡ

ƁThis is called the memorylessnessproperty.
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Markov Chains Dynamics

·The MC starts out at each state Ὥɴ Ὓwith 
probability ὥὭat time ὸ πȢ

·The MC remainsat state Ὥfor an exponentially 
distributed amount of time, with parameter ‗.

·After that the MC transitions to a new state Ὦ, 
with each state Ὦɴ Ὓhaving a transition 
probability ὴ . 

·!ÎÄ ÓÏ ÏÎȣ
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Defining a Markov Chain

·State space: Ὓ

ƁAll possible states the system can occupy

·Initial distribution vector: ὥ

Ɓὥί Probability that the system is at state ίat ὸ π

·Generator matrix: ὗ

Ɓὗ
‗ὴ

‗

ὭὪὭ Ὦ
ὭὪὭ Ὦ
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Transition Diagrams for MC

·A graph where:

ƁThe nodes are each ίɴ 3

ƁThe arcs are each ‗ ὴ πᶅ Ὥ ὮȠὭȟὮɴ Ὓ

·Example

ƁὛ ρȟς

Ɓ‗ ρȟρπ

Ɓὖ
πȢυ πȢυ
πȢς πȢψ

Ɓὗ
πȢυ πȢυ
ς ς

1 2

πȢυ

ς
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Measures of Performance

·ὴ ὸȡProbability of being in state ίat time ὸ

ƁIn vector form: ὖὸ

·“ȡLong-run average probability of being in 
state ί

ƁIn vector form: “

·ὓὝὝὃȡAverage time until absorption

Ɓ2ÅÌÅÖÁÎÔ ×ÈÅÎ ÔÈÅÒÅ ÉÓ Á ÓÅÔ ÏÆ ȰÁÂÓÏÒÂÉÎÇ ÓÔÁÔÅÓȱ
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Transient Analysis

·The objective is to calculate ὖὸfor some ὸ

ὖὸ ὥẗὩ ὥẗὍ
ὗὸ

ὲȦ
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Steady-state analysis

·The objective is to compute “

·Solve the following system of equations

“ὗ π

ᶰ

“ ρ
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Mean Time To Absorption 

·We can calculate MTTA as

ὓὝὝὃ

ᶰ

ᾀ

·Where ὃis the set of absorbent states, ὄare 
non-absorbent statesand ὃ᷾ὄ Ὓ

·And where 

ᾀ ὴ ὸὨὸ



EXAMPLES OF MARKOV 
CHAIN MODELS FOR 

RELIABILITY, AVAILABILITY 
AND MAINTAINABILITY
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Two-state Component

·Consider a single component that fails at a 
constant hazard rate ‗. Assume that repairs 
occur at a rate ‘Ȣ

ƁWhat is the probability that the component will be 
working in 1000 hours?

ƁWhat is the long-run availability of the component?

ƁWhat is the expected time to the first failure?
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Two-state Component

·State space: Ὓ όὴȟὨέύὲ

·Transition diagram: 

·)ÎÉÔÉÁÌ ÓÔÁÔÅȡ ȰÕÐȱ

up down

‗

‘
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Two-state Component

·The probability of being in each state after ὸis:

ὴ ὸ
‘

‗ ‘

‗

‗ ‘
Ὡ

ὴ ὸ
‗

‗ ‘

‗

‗ ‘
Ὡ

·Therefore: 

ÌÉÍ
ᴼ
ὴ ὸ “

‘

‗ ‘

ÌÉÍ
ᴼ
ὴ ὸ “

‗

‗ ‘
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N parallel components with 
shared repairs
·Consider a system with N identical components 

in parallel, which fail at a constant rate ‗. 
Assume that repairs occur one at a time at a rate 
‘, per repair. There is only one repair resource

ƁWhat is the long-run availability of the system?

ƁOn average how many components are operational?

A1

A2
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N parallel components with 
shared repairs
·State = Number of working components

·State space: Ὓ πȟρȟςȟȣȟὔ

·Transition diagram: 

ὔ ὔ-ρ

ὔ‗

‘

ρ π

‗

‘

ς

ς‗

‘

ὔ-ς

ὔ ρ‗

‘

ȣ

σ‗ὔ ς‗

‘‘
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N parallel components with 
shared repairs
·Balance equations

ὔ‗“ ‘“
ȣ

ς‗“ ‘“
‗“ ‘“

·Normalization: 

·Then,

“ ρ

ὃὺὥὭὰὥὦὭὰὭὸώρ “ ρ
‘

ὲȦ‗
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N parallel components with 
shared repairs
·For example for

ὉὕὴὩὶὥὸὭέὲὥὰὲ
‘

ὲȦ‗
“ τȢσφ

ὃὺὥὭὰὥὦὭὰὭὸώρ “ ρ
‘

ὲȦ‗
ωωȢωσςϷ

‗ πȢπρὬὶ ȟ ‘ πȢρὬὶ ȟ ὔ υ
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Workstation-Fileserver 

·Consider a system with 2 identical workstations 
and one fileserver, connected by a network. 

·The system is operational as long as:
ƁAt least 1 workstation is up

ƁThe fileserver is up
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Workstation-Fileserver 

·Assuming exponentially distributed times to 

failure

Ɓlw : failure rate of workstation

Ɓlf : failure rate of file-server

·Assume that components are repairable

Ɓmw: repair rate of workstation

Ɓmf: repair rate of file-server

·Shares repairs. File-server has priority for repair 

over workstations
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Workstation-Fileserver 

·State = (Number of operational workstations, 
number of operational fileservers)

·Ὓ ςȟρȟρȟρȟπȟρȟςȟπȟρȟπȟπȟπ
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Workstation-Fileserver

·Transition diagram:

0,0

2,1 1,1

1,02,0

0,1

lf

2lw

2lw

lw

mw mw

lw

mf mf mflf lf
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Workstation-Fileserver 

·Long run average Availability
ὃὺὥὭὰὥὦὭὰὭὸώ“ȟ “ȟ

·Example:

·Then 
ὃὺὥὭὰὥὦὭὰὭὸώπȢωωωω

1111 5.0,0.1,00005.0,0001.0 ---- ==== hhhh fwfw mmll
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Workstation-Fileserver

·Instantaneous availability

·ὃὸ ὴȟ ὸ ὴȟ ὸ

1111 5.0,0.1,00005.0,0001.0 ---- ==== hhhh fwfw mmll
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Workstation-Fileserver

·Calculate time until system failure

2,1 1,1

1,02,0

0,1

lf

2lw lw

mw

lf



Daniel F. Silva,
silva@auburn.edu

Workstation-Fileserver

·ὒὩὸ

·ὓὝὝὊᾀȟ ᾀ

·We can solve ᾀȟȟᾀȟnumerically using 
MATLAB as:

Ɓᾀȟ ᷿ ὴȟ ὸὨὸȟ ᾀȟ ᷿ ὴȟὸὨὸ

·Then ὓὝὝὊ ρωωωςὬέόὶί

1111 5.0,0.1,00005.0,0001.0 ---- ==== hhhh fwfw mmll
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Workstation-Fileserver

·Suppose workstations cannot be repaired

2,1 1,1

1,02,0

0,1

lf

2lw lw

lf
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Workstation-Fileserver

·ὒὩὸ

·ὓὝὝὊᾀȟ ᾀ

·We can solve ᾀȟȟᾀȟnumerically using 
MATLAB as:

Ɓᾀȟ ᷿ ὴȟ ὸὨὸȟ ᾀȟ ᷿ ὴȟὸὨὸ

·Then ὓὝὝὊωωωσὬέόὶί

1111 5.0,0.1,00005.0,0001.0 ---- ==== hhhh fwfw mmll



EXTENSIONS AND MORE 
COMPLEX MODELS
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Infinite Markov Chains

·Suppose that your system consists of infinitely many 
states.

·Example: The state represents the number of 
components awaiting repair, from an infinite pool.

·Some infinite-state MCs are well understood
ƁTraditional queues M/M/1, M/M/c, etc.
ƁSo-called quasi-birth-death processes.

·These kinds of models can be solved by
ƁAnalytical methods (for queues)
ƁMatrix-Analytic methods (for quasi-birth-death processes). 
ƁFluid approximations to a continuous system
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Phase-type Distributions

·Suppose that not all times are exponential

·%ØÁÍÐÌÅȡ 2ÅÐÁÉÒ ÔÉÍÅÓ Á ȰÎÅÁÒÌÙȱ ÄÅÔÅÒÍÉÎÉÓÔÉÃȢ

·PH-type distributions allow us to model the holding 
times at some states as other distributions.

·PH-type distributions use a new MCto model a single 
transition.

·Some distributions that can be well approximated by PH-
type are:

ƁErlang

ƁDeterministic

ƁHyper- and Hypo-exponential


