
Introduction to
Model Based Systems Engineering

November 9, 2017

L. Dale Thomas, Ph.D., P.E.
Professor & Eminent Scholar

dale.thomas@uah.edu

Summary

• Model Based Systems Engineering (MBSE) provides a new methodology to
perform systems engineering.
– The objective of systems engineering does not change, only the means.

• This session will review traditional systems engineering methodology and
illustrate the MBSE analogs.

© 2017 2

What System Engineers Do

• System engineers play an important role in designing and managing complex
systems.

– Systems engineers are concerned with the whole system and take a top-down,
interdisciplinary approach to design and management.

– System engineers are involved with a system throughout its life-cycle.

– System engineers are problem definers, not just problem solvers.

© 2017 3

(ref. Panitz, 1997)

Problem Definition
• The initial customer expectation for a new or enhanced mission or capability may be defined in

response to a variety of reasons:
– A current functional deficiency or existing operational deficiency,
– A desire to leverage new technology breakthroughs to enhance mission capability or market positioning,
– An evolving threat or competition, or
– A response to improve the capability based on observed behavior of current systems and their operators or

maintainers.

© 2017 4

Technology
Development

Project and System
Management

Needs
Analysis

Concept
Development

Preliminary
Design

Detailed
Design

Integration

Production Operations Retire

Production & Logistics Planning
Training

Operational
Deficiencies

Technological
Opportunities

Successful systems
are typically a
marriage of
technology
development &
operational
deficiency.

Technology Development or
Operational Deficiency?

Q. Does the evolution of the light
bulb indicate an advance of
technology or a deficiency in
lighting?

A. It depends on how you
characterize an operational
deficiency.

© 2017 5

Operational Deficiency
• A successful system brings the right technology to bear on an operational deficiency, where

the operational deficiency is characterized from the operators’ (customers’) perspective.

• Military planners first realized they needed something better than helicopters and fixed-wing
transports when they had malfunctioned and collided during a failed hostage rescue attempt
in 1980 in the Iranian desert, killing eight soldiers. They wanted “an aircraft that could
combine the speed and range of a turboprop airplane with the vertical agility of a
helicopter.” (ref: Thompson, 2011)

© 2017 6

Who are the Customers?

• To “listen to the voice of the customer”, we first need to identify the customer
– Customer in this context is comprised of various stakeholders

• In most cases there are many customers &/or stakeholders
– consumer/end user
– regulatory agencies
– manufacturing
– marketing/sales
– ...

© 2017 7

“Contrary to the traditional Engineering viewpoint of developing “widgets” ...
From the Engineer’s perspective for the User to figure out how to use, the
reverse should occur.” (ref: Wasson, p. 99.)

Two Dimensions of System Engineering

8

All disciplines
• Mechanical
• Electrical
• Electronic
• Control
• Aerodynamic
• Structural
• Thermal
• Acoustic
• Vibration
• Human Factors
• …

System engineers integrate across time &
across engineering disciplines.

© 2017

• Inception • Design • Production • Operations • Retirement

All Life Cycle Stages

Representative Technical Artifacts
for a Spacecraft Development

© 2017 9
(ref: Larson et.al., 2009)

• Technical artifacts primarily in
the form of documents.

• Keeping all these artifacts
mutually consistent and in
synch throughout system
development is essentially
impossible.

• Omissions and inconsistencies
often surface late in the life
cycle.

Future

SE Practices for Describing Systems

© 2017 10

• Specifications

• Interface
requirements

• System design

• Analyses & Trade-offs

• Test plans

• ...

Past

Moving from document-centric to model-centric.

Traditional Document Based SE vs. MBSE

Many
projects fit
here as a

mixture of
the two

ConOps Requirements
Traceability
Documents

Requirements
Specs

N2 Charts

Interface
Definition
Documents

Architecture
Description
Documents

System Model –
central repository
for all artifacts

Model elements
and relationships
capture design
decisions

Changes to one element
of design propagate
automatically throughout
the model to entire
design (ROI happens
here)

Document
Based

Model
Based

© 2017 11

Test
Reports

Drawings

Natural
Environment
Definition

User Manuals

Models are a Means, Not an End

• “...essentially, all models are wrong, but some are
useful.” -- George E.P. Box, 1987.

© 2017 12

System Model Characteristics

• Primary use is to design and evaluate a system that satisfies system
requirements and allocates requirements to the system’s components.

• Used to enhance communication between stakeholders
– Developer(s), operators, etc.

• Includes information on:
– System specification & design
– System analysis & evaluation

• Consists of elements that represent:
– Requirements
– Design elements & behaviors
– Interrelationships (between the above)

13© 2017

Why Build a System Model?

• Specify and design a new or modified system
– Represent a system concept
– Specify and validate system requirements
– Synthesize system designs
– Specify component requirements
– Maintain requirements traceability

• Evaluate the system
– Conduct system design trade-offs
– Analyze system performance requirements or other quality attributes
– Verify that the system design satisfies its requirements
– Assess the impact of requirements and design changes
– Estimate the system cost (e.g., development cost, life cycle cost)

• Train users on how to operate or maintain a system
• Support system maintenance and/or diagnostics

© 2017 14
(ref: Friedenthal et.al., 2014)

The system model can take
many forms. The best form
of the system model depends
on the purpose for which it is
constructed. Why is the
model being built?

Two Aspects of a System Model
• Structural

– The “what” of the system – what it is.
– Identifies and defines the system elements, defines

their properties, and identifies the relationships &
interactions between system elements.

• Behavioral
– The “how” of the system – how it functions.
– Identifies the behavior of the system at the system

level, between system elements, within system
elements, and within operations of system
elements.

• In general, both aspects are needed for system
modeling. However, in some instances either
may be sufficient depending on the purpose of
the system model.

© 2017 15
(ref: Holt & Perry, pp. 91-98)

(ref: Friedenthal, et.al., 2014)

Example: Structural Model

© 2017 16

Automated Teller Machine

Example: Behavioral Model

© 2017 17

Automated Teller Machine

Integrated System Model Must Address
Multiple Aspects of a System

© 2017 18

Engine Transmission Propeller

(ref: Friedenthal et.al. 2009, p. 7.)

Requirements

Control
Input

Power
Equations

Vehicle
Dynamics

Performance Models

Structural/Component Models

Mass
Properties

Model

Thermal
Model

Reliability
Model Cost

Model

Other Engineering
Analysis Models

Start Taxi Ascend

Functional/Behavioral Models
Cruise

System Model

Model-Based Systems Engineering (MBSE)

• “Model-Based Systems Engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verification, and
validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases.” (ref: Friedenthal et.al., 2014)

• MBSE produces a system model contained in a model repository
– System model includes system requirements, design, and evaluation information
– The system model can provide a more complete, consistent, and traceable system design
– Enhances the quality of traceability and change impact assessments

© 2017 19

System Modeling Languages

• SysML – most commonly used language for system modeling
– Graphical modeling language with rules and syntax
– Current version 1.4 – maintained by Object Management Group (OMG)

http://www.omgsysml.org/

• Other Modeling Languages
– UML – Unified Modeling Language

• SysML is based on UML
• Used for development in the field of software engineering
• Current version 2.5 – maintained by OMG http://www.omg.org/spec/UML/

– AADL – Architecture Analysis and Design Language
• SAE Standard for Model-Based Engineering (SAE AS5506)

– UPDM – The Unified Profile for DoDAF/MODAF
• Many DoD customers want to see DoDAF views, even if not required
• Current version 2.1 – maintained by OMG www.omg.org/spec/UPDM

– Text modeling languages (Verilog, Modelica)

© 2017 20

http://www.omgsysml.org/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UPDM

Systems Modeling Language – SysML

• What it IS
– A graphical modeling language
– Grammar
– Vocabulary
– A profile (an extension) of UML
– Specification owned by OMG

(www.omg.org)

• What it IS NOT
– A modeling method
– User must define the path to use SysML

in design
– Does not dictate that all graphical

views be used
– An independent language – a UML

extension
• Next version (2.0) will be a standalone

language

© 2017 21

http://www.omg.org/

SysML Diagrams

• Five Basic Types: Structure, Behavior, Parametric, Package, and Requirements Diagrams
– Structure Diagrams include Block Definition & Internal Block Diagrams
– Behavior Diagrams include Use Case, Activity, Sequence, & State Machine Diagrams

© 2017 22

FIGURE 3.1
SysML diagram taxonomy.
(ref: Friedenthal et.al., 2014)

The Operational Concept
(ref: ANSI/AIAA G-043A-2012)

© 2017 23

• The ConOps
communicates to all
system stakeholders,
in the user's
language, the
desired
characteristics of a
system to be
developed.

ConOps Development Benefits
(ref: ANSI/AIAA G-043A-2012)

• The ConOps provides a mechanism to trigger questions and raise issues regarding operator-
related and user-related needs and associated design trades. The effort to develop a
ConOps can achieve a number of benefits to a program, as follows:
– act as a catalyst to stimulate the development of complete, consistent, testable requirements and

designs with emphasis upon those attributes that shape the user-related elements of the system;
– provide guidance and clarification for the development of the subsequent system definition

documentation (e.g., operational system specifications and interface control drawings);
– form the basis for long range operational planning activities (i.e., staffing, facilities, training, security,

safety, and logistics);
– describe the system behavior(s) that are needed (give best and worst case); and
– reduce cost overrun and schedule slips by defining more accurately the system earlier in the

development stage; and decrease the chances that stakeholder dissatisfaction will terminate the
project.

© 2017 24

Use Case Diagrams

• Represents functionality in terms of
how a system or other entity is used
by external entities (i.e., actors) to
accomplish a set of goals
– Shows services the system performs.
– Shows Actors that participate in the

use cases.

• It’s a good practice to use photos in
place of stick figure actors to help
customers identify with real life
situations; this can be a very
enlightening tool with stakeholders.

© 2017 25

Sequence Diagrams

• Represents behavior in terms
of a sequence of messages
exchanged between parts
– Focus of behavior is on how

the blocks interact through
calls and signals.

• Useful for test cases on event
sequences.

• Requirements are often
defined as sequence diagrams
are developed.

• In modeling existing systems,
missing requirements are
often discovered at this stage.

© 2017 26

ConOps Anchors Requirements

© 2017 27

Operational Concept documents
the mission scenarios, which
provides the basis for the functions
the system must perform.

Functional allocation and
analysis provides the logical
basis for system requirements.

ConOps to FFBD to Requirements

© 2017 28

ACON.2.16.4.9
Support CLV Scrub
Turnaround

In the event of a launch scrub, the CLV
supports the scrub turnaround. The CLV
is returned to its pre-launch condition by
safing the pyros, unloading of propellants, etc.

FFBD Function

CLV.16
The CLV shall have an
sufficient operational life
to support 10
launch re-cycles.

6.1 Launch Scrub Turnaround
In the event of a launch scrub turnaround, after the crew egresses
the CEV, the CLV accepts the command to begin autonomous
vehicle safing. The CLV facilitates the draining of propellants (if
required) and vehicle safing.

Traces to

CLV Requirements

CLV Concept of Operations

Traces to*
CLV.90
The CLV shall be capable
of consumable unloading
at the launch site.

*Note – see FFBD traceability spreadsheets for all links

Functional Analysis
(ref. Blanchard and Fabrycky, 2011)

• The functional architecture is a hierarchical model of the
functions performed by the system and the system’s
components.

• It includes the flow of informational and physical items
from outside the system through the transformational
processes of the system’s functions and on to the
waiting external systems being serviced by the system.

• Functional analysis is where the Operational Scenarios
meet the System Architecture. Ideally, both are refined
in lockstep.

© 2017 29

Figure 3.20 System
functional breakdown

Activity Diagrams

• Represents behavior in terms of the
ordering of actions based on the
availability of inputs, outputs, and
control, and how the actions
transform the inputs to outputs

• Commonly used in analysis to
understand desired behavior of
system

• Missing requirements are often
discovered when modeling behavior
of existing systems via activity
diagrams

© 2017 30(Image ref: Delligatti, Figure 6.10 on p. 100.)

Operational Scenarios
(ref: ANSI/AIAA G-043A-2012)

• Describe the dynamic views
of the system's operation,
primarily from the users'
points of view.

• Articulate how the system
will operate through various
modes and mode
transitions, including its
expected interactions with
the external environment,
outlining all important
anticipated user, operator,
tester, and maintainer
interactions that provide the
basis and framework for the
system analysis and
evaluation.

© 2017 31

State Machine Diagrams

• Represents behavior of an entity in terms of its transitions between states triggered by events
• Useful in development stage of life cycle.
• Very helpful in functional requirements definition.
• Very useful in showing behaviors of multiple states that change in scenarios of operation of

large scale systems.

© 2017 32

(Image ref: Delligatti, Figure 8.2 on p. 159.)

Requirements Diagrams

• Used to show text-based requirements

• Relationship between requirements can be
shown

• trace, containment, derive, refine, etc.

• Relationships to other model elements can be
shown

• satisfy, trace, verify, etc.

• Comment: In a project in which MBSE is
being introduced, requirements diagrams can
be key to making customers comfortable with
the advantages of MBSE in impact analysis.

© 2017 33(Image ref: Delligatti, Figure 11.1 on p. 203.)

Package Diagrams
• Displays the way that

the integrated system
model is organized from
the various models
comprising it.

• May show the
dependencies between
packages and their
model elements.

© 2017 34(Image ref: Delligatti, Figure 10.1 on p. 191.)

Typical Systems

© 2017 35 Personal Computer (PC)

Hybrid Car

DC Metro subway train

Boeing 787 Dreamliner

(ref: Muratore, 2010.)

Systems are Comprised of Components

© 2017 36

PC contains many components, including a
mainboard that is in turn made of components
(printed circuit board, various integrated circuits
& electronic parts).

Systems are Often Components of
Larger Systems

© 2017 37

Airliner – airline and routes

Car – highway system

Subway train – subway system PC - internet

(ref: Muratore, 2010.)

Block Definition Diagrams

• Displays system elements as blocks and identifies value types
• Shows relationships between system elements

– Examples are system hierarchy trees and classification trees

© 2017 38

Parts
• Consider an automobile system. If the automobile is defined as the block,

the wheels, engine, etc. are the parts, which may themselves be comprised of
parts.

© 2017 39

«block»
Automobile

parts

wheels: Wheel [4]
engine: Engine [1]
transmission: Transmission [1]
differential: Differential [1]
body/chassis: Body&Chassis [1]
brakes: Brakes [1]
suspension: Suspension [1]
interior: Interior [1]

(image ref: Friedenthal et.al., 2014)

Parametric Diagram

• Used to evaluate
system parameters
– equations
– inequalities

• Support engineering
modeling and
analysis
– performance,
– reliability,
– availability,
– power,
– mass,
– cost,
– etc.

• Represents constraints on property values, such as
F=m*a, used to support engineering analysis

• Can be used for trade studies of candidate
architectures; this is a key feature and benefit of MBSE.

© 2017 40

Hardware & Software Interfaces

• Physical object on a hardware object boundary
– Spigot
– HDMI jack
– Fuel nozzle
– Gauge
– etc.

• Interaction point on a software object boundary
– TCP/IP socket
– Message queue
– Shared memory segment
– Graphical user interface
– Data file
– etc.

© 2017 41

Internal Block Diagrams (IBDs)

• IBDs are created in conjunction with BDDs
to further describe blocks
– IBDs show connections, flows, and/or

services between parts of blocks and
external references (think configuration)

• IBDs and BDDs show complimentary views
of blocks
– BDDs show structure of a set of blocks
– IBDs show relationships of parts internal to

a block

• In the diagrams on the left, the BDD would
depict that the automobile is comprised of
all the parts, while the IBD would depict
how the parts interact.

– i.e. the engine has a both a rigid structural and a
rotating structural interaction with the
transmission.

© 2017 42
(image ref: Friedenthal et.al., 2014)

Internal Block Diagrams

• Represents
interconnection and
interfaces between the
parts of a block
– Shows the internal

structure of a single
block.

– Shows interfaces of
internal parts of a block.

© 2017 43

(Image courtesy of Cheryl Hawkins.)

RAM Applications

• Research has shown that
system models
developed in SysML
possess the requisite
information to develop:
– Reliability Block Diagrams

(ref: Liu et.al., 2013)

– Fault Trees (ref: Izygon et.al.,
2016)

– Failure Mode & Effects
Criticality Analyses (ref: David
et.al., 2010, Izygon et.al., 2016)

– Hazard Propagation
Models (ref: Zhou et.al., 2014)

© 2017 44

(image ref: Mhenni, et.al., 2014)

General Diagram Comments

• A diagram is a view of the model, not the model itself.
– Similar to a picture of a mountain – the photograph is not the real geographical feature but a

view of it
– Different diagrams show different views and serve different purposes

• No diagram should be used to show every detail of a model; views should be
specific to purpose.

• If an element doesn’t exist on a diagram, that does not mean the element doesn’t
exist in the model.

• It takes many views, or diagrams, of the model to convey desired behavior of a
system.

© 2017 45

Remarks

• System behavior described in ConOps & functional analysis in traditional systems
engineering practice.
– Traditionally captured in hierarchy of Systems Requirements documents.
– Described in SysML by Use Case, Sequence, Activity, & State Machine with associated Requirements

diagrams.

• System architecture and physical interactions traditionally described by drawing trees &
mathematical models.
– Traditionally described by geometric models & mathematical models with selected parameters

controlled in interface description & control documents.
– Described by Block, Parametric, and Internal Block diagrams.

• Selected systems analysis methods such as Reliability Block Diagrams lend themselves well to
implementation in SysML.

© 2017 46

References

• Blanchard, B. & W. Fabrycky, Systems Engineering & Analysis, 5th ed., ISBN 978-0-13-221735-4,
Prentice-Hall, 2011.

• David, P., V. Idasiak, & F. Kratz, “Reliability study of complex physical systems using SysML,” Reliability
Engineering and System Safety, 95 (2010), pp 431–450, Elsevier, 2010.

• Delligatti, L., SysML Distilled: A Brief Guide to the Systems Modeling Language, ISBN 978-0-321-92786-
6, Addison-Wesley, 2014.

• Friedenthal, S., A. Moore, & R. Steiner, “OMG Systems Modeling Language (OMG SysMLTM) Tutorial,”
INCOSE, September 2009.

• Friedenthal, S., A. Moore, & R. Steiner, A Practical Guide to SysML, Third Edition: The Systems Modeling
Language, 3rd Edition, ISBN: 978-0-12-800202-5, Morgan Kaufmann, November 2014.

• Guide to the Preparation of Operational Concept Documents, ANSI/AIAA G-043A-2012, American
National Standards Institute, July 2012.

• Holt, J. & S. Perry, SYSML for Systems Engineering: A Model-Based Approach, 2nd ed., ISBN: 978-1-
84919-651-2, The Institution of Engineering and Technology, December 2013.

© 2017 47

References (continued)

• Izygon, M., H. Wagner, S. okon, L. Wang, M. Sargusingh, & J. Evans, “Facilitating R&M in Spaceflight
Systems with MBSE,” 2016 Annual Reliability and Maintainability Symposium (RAMS), January 2016,
Tucson, Arizona, USA.

• Larson, W., D. Kirkpatrick, J. Sellers, L.D. Thomas, & D. Verma (ed.), Applied Space Systems Engineering,
McGraw-Hill, 2009.

• Liu, X., Y. Ren, Z. Want, & L. Liu, “Modeling Method of SysML-based Reliability Block Diagram,” 2013
International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), pp. 206-9,
Dec 20-22, 2013, Shenyang, China.

• Mhenni, F. N. Nguyen, & J. Y. Choley, “Automatic Fault Tree Generation From SysML System Models,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 715-720,
Besançon, France, July 2014.

• Muratore, J., Lecture Notes from Systems Engineering Course, University of Tennessee Space Institute,
2010. May be downloaded at http://spacese.spacegrant.org/index.php?page=john-muratore-graduate-
course.

• Panitz, B., "Training Technology's Maestros." ASEE Prism, Nov. 1997, pp. 18-24.

© 2017 48

References (continued)

• Thompson, L., “The Much Maligned V-22 Osprey is Confounding Critics,” DefenseTech.org, April 4, 2011.
• Wasson, C. S., Systems Engineering: Analysis, Design, & Development, 2nd edition, ISBN 978-1-118-

44226-5, Wiley, 2016.
• Zhou, S., J. Jiao, & Q. Sun, “A Safety Modeling Method Based on SysML,” 2014 International Conference

on Reliability, Maintainability and Safety (ICRMS), August 6-8, 2014, Guangzhou, China.

© 2017 49

	Introduction to�Model Based Systems Engineering��November 9, 2017
	Summary
	What System Engineers Do
	Problem Definition
	Technology Development or �Operational Deficiency?
	Operational Deficiency
	Who are the Customers?
	Two Dimensions of System Engineering
	Representative Technical Artifacts �for a Spacecraft Development
	SE Practices for Describing Systems
	Traditional Document Based SE vs. MBSE
	Models are a Means, Not an End
	System Model Characteristics
	Why Build a System Model?
	Two Aspects of a System Model
	Example: Structural Model
	Example: Behavioral Model
	Integrated System Model Must Address �Multiple Aspects of a System
	Model-Based Systems Engineering (MBSE)
	System Modeling Languages
	Systems Modeling Language – SysML
	SysML Diagrams
	The Operational Concept�(ref: ANSI/AIAA G-043A-2012)
	ConOps Development Benefits�(ref: ANSI/AIAA G-043A-2012)
	Use Case Diagrams
	Sequence Diagrams
	ConOps Anchors Requirements
	ConOps to FFBD to Requirements
	Functional Analysis�(ref. Blanchard and Fabrycky, 2011)
	Activity Diagrams
	Operational Scenarios�(ref: ANSI/AIAA G-043A-2012)
	State Machine Diagrams
	Requirements Diagrams
	Package Diagrams
	Typical Systems
	Systems are Comprised of Components
	Systems are Often Components of �Larger Systems
	Block Definition Diagrams
	Parts
	Parametric Diagram
	Hardware & Software Interfaces
	Internal Block Diagrams (IBDs)
	Internal Block Diagrams
	RAM Applications
	General Diagram Comments
	Remarks
	References
	References (continued)
	References (continued)

