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Purpose
• Explain the practical benefits of using Design of Experiments (DOE)

• Quantitatively justify the amount of tests to be done (cost)

• Quantitatively assess our chances of making incorrect conclusions when analyzing data (risk)

• Quantitatively assess our ability to understand the effects of variables in our tests 
(information)

• At some point, most of us are required to trade cost, risk, and information

• Properly implementing DOE allows us to make this trade effectively 

• Please do not expect

• Silver bullet solutions for planning experimentation/testing

• Simple solutions (our systems are not simple)

• Myths we will address

• DOE is not flexible enough for my situation

• Using DOE eliminates the need for system knowledge & engineering expertise
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Types of Testing and Experimentation

• We will use the term “testing” very broadly for this discussion

• Testing:  Changing something to understand the effect it has

• Examples
• Running digital or hardware-in-the-loop simulation to characterize how a component or system 

performs

• Changing production parameters to assess their effect on product quality 

• Developmental or operational testing to assess system performance and to provide data for 
simulation validation

• Gage repeatability and reproducibility studies

• Component level test to determine if a piece of hardware functions as expected or required

• Changing system performance characteristics to understand the effect of specification changes in AoA or 
in trade studies

• Changing training procedures to determine what method is most effective

• Changing combinations of cockpit instruments and displays to determine their effect on pilot situational 
awareness

• Testing software to identify bugs
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Can DOE Be Useful for Me?
• DOE is not very useful if you are just trying to demonstrate something CAN work

• This is different from WILL work

• Single shot demonstration or proof of concept

• DOE is useful (I would say “is necessary”) if you find yourself answering 
(characterization) questions like:

• Does this thing do what it is supposed to consistently across the requirements space?  If not, 
where does it fail?

• If I make these changes will things get better, worse or stay the same?

• How closely does my simulation represent reality?

• How much should I budget for experimentation/testing?

• How much risk of making an incorrect conclusion am I taking?

• If my budget is cut, how should I adjust my test plan?

• What will make my software crash?

• Is my measurement system adequate?
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Planning Experiments
• To plan an effective experiment, several questions must be answered

• What is the objective of the experiment? (i.e., What do I want to learn?)

• What is the output variable(s) (response) you want to investigate and how will you measure it?

• Do you want to response to be higher, lower, or do you want to hit a particular target value?

• What input variables (factors) do you want to include in testing?

• How many levels of those variables do you want to investigate?

• All tests/experiments are designed, but a good experimental design should also be able to address 
these questions

• How likely am I to detect if an important variable matters?

• How likely am I to think something is important when it isn’t?

• How many test scenarios and test assets will I need?

• What scenarios should be included in the test plan?

• DOE is now being used to a greater extent than in the past to answer these questions.
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Design of Experiments Roadmap

Output

Process Step

Decision

Start

Yes

No

Output

Process StepProcess Step

DecisionDecision

Start

Yes

No

Execute
Test Matrix

Results and Analysis

Planning: Factors 
Desirable and Nuisance

Desired Factors 
and Responses

Design Points

Validate the Model Discovery, Prediction
A-o-A Sideslip Stabilizer LEX Type A-o-A Sideslip Stabilizer LEX Type

2 0 -5 -1 2 0 5 -1

10 0 -5 -1 10 0 -5 1

2 8 -5 -1 10 8 5 -1

10 8 -5 -1 2 8 5 -1

2 0 5 -1 2 8 -5 -1

10 0 5 -1 2 0 -5 -1

2 8 5 -1 10 8 -5 1

10 8 5 -1 2 0 5 1

2 0 -5 1 2 8 5 1

10 0 -5 1 10 8 5 1

2 8 -5 1 10 8 -5 -1

10 8 -5 1 10 0 5 -1

2 0 5 1 10 0 -5 -1

10 0 5 1 2 8 -5 1

2 8 5 1 10 0 5 1

10 8 5 1 2 0 -5 1

Actual Predicted Valid

0.315 (0.30 , .33) 

Source:  Air Force DOE for Leaders Class Slides6



Terminology

Y: Output, dependent variable, response variable

X: Input, independent variable (something we would like to measure and specify in an experiment)

Level: Unique values for the factor (X) that will be used in the experiment

Run or Scenario: In the experiment/test matrix, a combination of the levels of the Xs

Replication: A repeat of the experiment (if we do an experiment twice, we have two replications)

Effect: The difference in output (Y) when input X is changed

Interaction: When the effect of one input variable depends on the value of another input variable

Detection Range
Process

Target ID

Inputs/Factors Outputs/Responses
(Possibly Multiple)

Threat Type

Angle of Arrival

Aircraft Altitude

Aircraft Speed

Number of Threats

Difference in Prioritization

Response Time

Correct Symbology
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The Basics:
What’s The Point?
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What is Design Of Experiments (DOE)?

• “Every experiment is a designed experiment, some are poorly 
designed, some are well designed” – G.E.P.  Box

• DOE generally refers to structured methods of developing 
experiments.  It includes far more than the factorial or fractional 
factorial experiments that are taught in introductory DOE classes

• Factorial experiments are very useful

• Other designs are available when factorial designs do not meet our needs

• Factor covering uses recently developed algorithms to efficiently test n-level 
combinations of variables.  Good for interoperability and software testing.
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Why use DOE?

• DOE is used to understand the effects of (usually multiple) input variables on 
an output or outputs

• DOE provides the maximum amount of information for a given number of 
tests/assets

• DOE allows us to evaluate effects of relationships between input variables 
(interactions)

• With DOE we can assess our likelihood of detecting significant variables 
(known as power)

• DOE allows us to most efficiently assess performance over our 
requirements space

• DOE assists in making intelligent trades between cost and information gained
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What Does DOE Do For Us?
• You will sometimes hear the term “orthogonal design”

• Orthogonality in test designs allows us to separate effects of factors

• DOE provides orthogonal (or nearly orthogonal) test designs

• One definition of orthogonal says that if two objects are orthogonal they 
are at 90 degree (normal) angles to each other

OrthogonalNot OrthogonalNot Orthogonal

MikeMikeStan Mike

Stan

Stan
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Why Be Normal (Orthogonal)?

OrthogonalNot 
Orthogonal

Only in the orthogonal case can you reliably tell who is pushing the box 
and in what direction he is pushing

We want our test matrices to be orthogonal so we know what makes a 
difference and how much difference it makes

Can you tell who is pushing these boxes?

Not 
Orthogonal

MikeMikeStan Mike

Stan

Stan
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What if both factors matter?

So what if Stan is also pushing the box?

Mike

Stan

The net effect is diagonal movement, but because of orthogonality we 
can tell what part of the movement is caused by Stan and what part is 
caused by Mike.
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So What’s An Interaction?
An interaction exists when the effect of one factor is 
dependent on the level of one or more other factors.

Mike

Stan

Mike

In this slide, only Mike is pushing the box.  However, we see that when 
Stan is not there Mike doesn’t push the box as far.  Mike’s effect (the 
distance he pushes the box) depends on whether Stan is present.  This is 
an example of an interaction.
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When to Use DOE
• Screening designs

• Factorial and fractional factorial designs

• Used to determine what main effects (no interactions) have a significant impact

• Process optimization

• Could be used in modeling or hardware

• Useful when nonlinear responses are suspected

• Performance characterization

• Several types of design depending on circumstances: Factorial, fractional 
factorial, optimal, response surface

• Hardware performance or using simulation to determine sensitivities

• Combinatorial testing or space filling designs for debugging software 
or for interoperability testing

• All combination of variables/levels up to n-levels

• Example: All 4-way combinations of variable levels

From Scientific Test and Evaluation Design Working Group Kick-off Meeting Slides15



DOE Throughout Development

Software Test
Limited Hardware

(1000s of Runs)

HWIL
(100s to 1000s of Runs)

EDT/DT
(10s to 100s of Runs)

OT
(10s of Runs)

Use DOE for simulation to determine software 
sensitivities to many variables.  Also used to develop a 
test matrix that will give a “quick look”.  Use factor 
covering arrays to identify software bugs.

Use DOE to most effectively use lab and hardware assets.  
Will allow comparison of interaction results between HWIL 
and STS/ILS.  Us information to help finalize factors and 
levels for DT.

Use DOE to identify scenarios that most completely cover the 
requirements space with limited assets and to provide the most useful data 
for simulation validation.  Use to identify with confidence those variables 
that need testing in OT and those that can be excluded.

Use DOE to minimize the assets while gaining information required to verify 
whether a system meets performance requirements.

Digital Simulation
(10s to 100s of Thousands of Runs)

Use DOE to understand effects of component 
variation and sensitivities to many variables.

(Sub)Component Development and Testing

Design for Six Sigma and DOE used during 
subcomponent development leads to confidence 
in performance and reliability.   Helps identify and 
correct problems early.
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Types of Designs
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Full Factorial Design

Run
Aircraft 
Altitude

(A)

Aircraft 
Speed

(B)

1 - -

2 - +

3 + -

4 + +

AB

+

-

-

+

Threat Range

Threat
Speed

-

-

+

+

Run 3 Run 4

Run 2Run 1

Contains all possible combinations of factors and levels

Interaction between Threat Speed and Threat Range
We don’t get this from changing one factor at a time

For two independent variables, threat speed and threat range, we want to know their effect on ability to hit the threat:

Design Nomenclature: 
• The columns contain the factors that are being controlled in the test
• For two level factors, “-” or “-1” is typically used for the low level and “+” or “+1” for the high level
• Each row in a matrix is called a run
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Full Factorial (cont)
For three independent variables:

Run Aircraft 
Altitude

(A)

Aircraft 
Speed

(B)

Threat Type
(C)

1 - - -

2 - - +

3 - + -

4 - + +

5 + - -

6 + - +

7 + + -

8 + + +

AB AC BC ABC

+ + + -

+ - - +

- + - +

- - + -

- - + +

- + - -

+ - - -

+ + + +

Main Effects Interactions

Advantages Disadvantages   
Tests all possible combinations For more than a few variables, requires many runs (2k)
Allows evaluation of interactions
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Full Factorial Case Study
A 23 factorial design was used to study the effect of percentage carbonation (A), operating 
pressure (B), and line speed (C) on the fill height (FH) of a carbonated beverage.

A:PC B:OP C:LS FH

-1 -1 -1 -3

1 -1 -1 0

-1 1 -1 -1

1 1 -1 2

-1 -1 1 -1

1 -1 1 2

-1 1 1 1

1 1 1 6

-1 -1 -1 -1

1 -1 -1 1

-1 1 -1 0

1 1 -1 3

-1 -1 1 0

Source: D.C. Montgomery, Design & Analysis of Experiments, 8th Ed, 
Wiley, 2001, p. 232-233. 
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Fractional Factorial Experiments
• Only runs a “fraction” of the runs in a full factorial

• Based on the principal that main effects and 2-way interactions have the largest effect on 
the response variable

• Advantages

• Significantly reduces the number of runs required

• Allows Sequential Experimentation which can save time, effort, and resources

• Good for screening a large number of factors to a smaller number

• Disadvantages

• Higher order interactions can be missed

• Lower power for factors tested

Full Factoral 1/2 Fraction 1/4 Fraction 1/8 Fraction 1/16 Fraction

# Factors (k) 2k 2k-1 2k-2 2k-3 2k-4

4 16 8 4

5 32 16 8 4

6 64 32 16 8 4

7 128 64 32 16 8

8 256 128 64 32 16

# Runs in 1 Replication of the Experment
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Designing a Fractional Factorial Experiment

Full Factorial (2 Factors)

AB 
Interaction

Run
Aircraft 
Altitude

(A)

Aircraft 
Speed

(B)

1 - -

2 - +

3 + -

4 + +

AB

+

-

-

+

Start with Full 2 
Level Factorial

Threat 
Type

(C)

+

-

-

+

Replace the 
Interaction 
with a Main 
Effect

Allows us to 
see 3 Factors 
in half the 
runs

Confounded 
with 2 Level 
Interactions

By replacing the interaction AB with the main effect Network Traffic we 
have assumed that the interaction AB has negligible effect.  Otherwise, we 
will not be able to accurately estimate the effects of Network Traffic.

Main effect 
replaces AB 
Interaction

C=C+AB



Objective: Identify factors that impact eye focus time

Factors: Visual acuity (A), Distance from target to eye (B), Target shape (C), Illumination level (D), 
Target size (E), Target density (F), and Subject (G)

Fractional Factorial Case Study
(27-4 Fractional Factorial Experiment)

A B C D E F G Time

-1 -1 -1 1 1 1 -1 85.5

1 -1 -1 -1 -1 1 1 75.1

-1 1 -1 -1 1 -1 1 93.2

1 1 -1 1 -1 -1 -1 145.4

-1 -1 1 1 -1 -1 1 83.7

1 -1 1 -1 1 -1 -1 77.6

-1 1 1 -1 -1 1 -1 95

1 1 1 1 1 1 1 141.8

Source: D.C. Montgomery, Design & Analysis of Experiments, 8th Ed, Wiley, 2013, p. 355. 
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Fractional Factorial Case (cont)
Alternative fraction run to gain more insight into the relationships

A B C D E F G Time

1 1 1 -1 -1 -1 1 91.3

-1 1 1 1 1 -1 -1 136.7

1 -1 1 1 -1 1 -1 82.4

-1 -1 1 -1 1 1 1 73.4

1 1 -1 -1 1 1 -1 94.1

-1 1 -1 1 -1 1 1 143.8

1 -1 -1 1 1 -1 1 87.3

-1 -1 -1 -1 -1 -1 -1 71.9

Source: D.C. Montgomery, Design & Analysis of Experiments, 8th Edition, Wiley, 2013, p.356. 
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Fractional Factorial Case (cont)
Data for the two experiments can be combined to break apart alias structure and understanding 

which factors have the strongest relationship to the response (Eye Focus Time)

Block A B C D E F G Time

1 -1 -1 -1 1 1 1 -1 85.5

1 1 -1 -1 -1 -1 1 1 75.1

1 -1 1 -1 -1 1 -1 1 93.2

1 1 1 -1 1 -1 -1 -1 145.4

1 -1 -1 1 1 -1 -1 1 83.7

1 1 -1 1 -1 1 -1 -1 77.6

1 -1 1 1 -1 -1 1 -1 95

1 1 1 1 1 1 1 1 141.8

2 1 1 1 -1 -1 -1 1 91.3

2 -1 1 1 1 1 -1 -1 136.7

2 1 -1 1 1 -1 1 -1 82.4

2 -1 -1 1 -1 1 1 1 73.4

2 1 1 -1 -1 1 1 -1 94.1

2 -1 1 -1 1 -1 1 1 143.8

2 1 -1 -1 1 1 -1 1 87.3

2 -1 -1 -1 -1 -1 -1 -1 71.9

Adapted from D.C. Montgomery, Design & Analysis of Experiments, 8th Ed, Wiley, 2013, p. 356. 25



Taguchi’s Approach 

to Design of Experiments

Source for Orthogonal Arrays & Linear Graphs: Taguchi, G., Chowdhury, S. and Wu, Y. (2004) Appendix 
C: Orthogonal Arrays and Linear Graphs for Chapter 38, in Taguchi's Quality Engineering Handbook, 
John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470258354.app3
http://onlinelibrary.wiley.com/doi/10.1002/9780470258354.app3/pdf
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Two Views of Quality

Source: http://leansixsigmadefinition.com/glossary/taguchi-loss-function/

Traditional View of Quality Taguchi’s View of Quality

27
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23 Full Factorial Design

Some Orthogonal Arrays
Taguchi Nomenclature: 1 is low & 2 is high

28

27-4 Fractional Factorial Design

215-11 Fractional Factorial Design



DOE using L8 Orthogonal Array

Basic Design Process:
• Determine number of factors to include in design

• L8 Array can be used for up to 7 factors
• Assign factors to columns

• Taking into consideration aliasing 

Three Experiments Designed using L8 Array

1 2 3 4 5 6 7

A B AxB C AxC BxC AxBxC

1 2 3 4 5 6 7

A B AxB C AxC BxC AxBxC

BxCxD AxCxD CxD AxBxD BxD AxD D

1 2 3 4 5 6 7

A B AxB C AxC BxC AxBxC

BxCxD AxCxD CxD AxBxD BxD AxD D

BxE AxE E DxE AxDxE BxDxE CxE

BxCxE AxCxE

Column Number

Column Number

Experiment 1 (23 Full Factorial)

Experiment 2 (2
4-1

 Fractional Factorial)

Experiment 3 (2
5-2

 Fractional Factorial)

Column Number

Source: P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd Ed, McGraw Hill, 1996, p. 56-57. 29



Taguchi’s Approach to DOE
Observations:

• Taguchi raised awareness that we really want the process on-target AND we want to 
reduce variability

• Orthogonal Arrays provides a set of pre-established designs

• Some of these designs are traditional fractional factorial designs

• Some of these designs are Plackett Burman designs

• Issue: These designs have complex aliasing that we may not be able to break apart using sequential 
experimentation strategy

• Potentially provides information on more factors with fewer runs

• The trade-off is that we have to give up some information

• If we don’t know the alias structure of a design we cannot run an alternative fraction of the 
design to break apart the aliases to determine what is actually “driving” the process

• A better approach would be to use fractional factorial designs with a sequential 
strategy to purposefully identify factors that are “driving” the process. 
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Response Surface Design

• Adds center points and additional runs to the factorial design

• Allows evaluation of curvature

• Mostly for quantitative variables

Design-Expert® Software

CL

3.252

3.119

X1 = A: X Dirn

X2 = B: Y dirn

  -1.00

  -0.50

  0.00

  0.50

  1.00

-1.00  
-0.50  

0.00  
0.50  

1.00  

3.11  

3.1475  

3.185  

3.2225  

3.26  

  
C

L
  

  A: X Dirn  

  B: Y dirn  

For three independent variables

Source: Air Force DOE  Class Slides Source: Air Force DOE  Class Slides
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Sequential Nature of RSM

Initial Objective: 

Lead Experimenter rapidly and 

efficiently along a path of 

improvement toward the 

general vicinity of the optimal

Final Objective:

To determine optimum 

operating conditions for 

system or where operating 

requirements are satisfied

Source: D.C. Montgomery, Design & Analysis of Experiments, 8th Ed, Wiley, 2013, Chapter 11 (Fig 11-3, p. 419)
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Response Surface Design Case

x1 x2 y

-1 -1 76.5

1 -1 78.0

-1 1 77.0

1 1 79.5

-1.414 0 75.6

1.414 0 78.4

0 -1.414 77.0

0 1.414 78.5

0 0 79.9

0 0 80.3

0 0 80.0

0 0 79.7

0 0 79.8

x1 x2 y

-1 -1 39.3

-1 1 40.0

1 -1 40.9

1 1 41.5

0 0 40.3

0 0 40.5

0 0 40.7

0 0 40.2

0 0 40.6

80

79

78

77

77

76

75

75

x1

x
2

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

Contour Plot of y vs x2, x1

Objective: Determine operating conditions that maximize the process yield (y)

Factors: Reaction time (x1), Reaction temperature (x2)
Initial 22 Design Results indicate A&B Significant Traverse Path of Steepest Ascent

RSM Design & Peak
Results Show Optimal Region

Adapted from D.C. Montgomery, Design & Analysis of Experiments, 8th Ed, Wiley, 2013, Chapter 11. 33



Optimal Designs
• Computer generated designs based on SME inputs

• Two primary uses

• Creating designs with significant constraints

• Repairing existing designs

• Purpose is to optimize a specific test design 
parameter

• D-optimal: Minimizes variance of model coefficients

• I-optimal: Minimizes average prediction variance

• There are many types of optimal designs

• Can be used to back into a design when assets 
available are known and limited

Source: Air Force DOE  Class Slides
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Software Testing

• Testing for software is a newer field than traditional testing

• Because software will give repeatable answers for the same inputs, the 
variability normally addressed by designed experiments does not exist

• Testing for software is based on probabilities

• Two primary types of designs

• Space filling

• Factor covering

• Much study still ongoing in this area

• There is not a well-developed set of principles and methods

• Not used to quantify the effects of inputs on an output
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Space Filling Designs
• 3 Popular Algorithms:

– Sphere-Packing

• Maximize the smallest 
distance between neighbors

• Effect: Moves points out to 
boundaries

– Uniform

• Minimize discrepancy from a 
uniform distribution

• Effect: Spreads points within 
interior

– Latin Hypercube

• Assign n congruent levels and 
minimize covariance

• Effect: Combination of the 
above

Source: Air Force DOE I Class Slides

Source: Air Force DOE  Class Slides

Source: Air Force DOE  Class Slides

Source: Air Force DOE  Class Slides
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Factor Covering
• Also known as high throughput testing

• Goal is to cover some number (n) of combinations of factors and levels

• Does not quantify effects

• Uses many (sometimes phenomenally) fewer runs than traditional designs

• Good for quantitative and qualitative variables

• Example

• All possible combinations would require 27 runs

• All possible pairs can be covered in 9 runs

• Design is software generated and is not unique

Type of Radar Quantity of Radar Target Speed

Patriot 1 Slow

Sentinel 2 Mid

JLENS 3 Fast
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Confidence and Power
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Confidence and Power?
• From test data we want to determine which of our test variables impact 

performance (and how much) and which variables don’t

• Ideally, no test variable will have an unfavorable impact on performance when set 
within the requirements space

• This would mean that the system performs equally well anywhere in the space

• Not likely

• To determine if variables have an impact and the magnitude of the impact we 
perform various analyses on our test data

• Hypothesis testing

• Analysis of Variance (ANOVA)

• Regression Analysis

• It is important to know how much we can rely on the results of our analysis

• Confidence tells us the likelihood that we will not falsely identify a factor as significant 
(avoiding a false positive)

• Power tells us the likelihood that analysis will not fail to identify a significant variable 
(avoiding a false negative)
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Example
• Say we are testing the effect of threat type on the distance at which we detect 

the target.  Specifically, is our detection distance for Target A greater than for 
Target B?

• For the difference in detection distance, we measure our distance from the target 
when we detected it.  

• We can use a hypothesis test for differences in means to evaluate whether our 
average detection distance changed with target type.

• But first we have to answer a few questions

• How much of an effect (difference in detection range) do we need to detect?

• How sure do we want to be that target type has a given effect on detection range if 
analysis says it does?  This is our confidence  (related to α or Type I error).

• How sure do we want to be that we will successfully determine that target type has a 
given effect on detection range if it really does?  This is our power (related to β or Type II 
error).

• These questions help determine the required sample size 
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What Does Confidence Mean to Me?
• The risk of falsely identifying an effect is α

• Confidence is equal to 1- α

• Using our detection range example, let’s say that we want to show that target 
type (within spec limits) does not have an effect significant enough to cause us to 
fail to detect a target at the required range.  If it does, then say the radar system is 
not acceptable.

• Those trying to show that the system is acceptable want to plan the test with a 
high confidence level

• This will give confidence that we do not falsely identify a problem

• False identification will unnecessarily add cost for the producer

• Bottom line: A high confidence level is most important to those who want to 
avoid finding an issue that doesn’t really exist

• Effect on cost: All other things equal, a larger sample size (increased cost) is 
required to increase confidence

41



What Does Power Mean to Me?
• The risk of failing to identify a significant effect is β

• Power is equal to 1-β

• Using the detection distance example, those who are using the radar system to 
make sure that any significant effects of target type on detection range are known.

• Users want to make sure that tests are planned with a high power

• This increases the likelihood that we do not fail to identify a problem

• Failure to identify a problem may result in field failures or poor employment strategy

• Bottom line: High power benefits those who are interested in ensuring that issues 
are detected

• Impact on cost: All other things equal, to correctly identify a given effect with given 
confidence, higher power requires a larger sample size (higher cost)

• Power is only meaningful prior to performing a test
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Target Type A

We want to know if the average detection range is affected by our test factors.  For 
example, does threat type affect our miss distance?

Target Type B

If the averages are equal then 
the distribution will be 
centered near zero.

If we 1) take a sample from each distribution 2) calculate the average of each sample 3) 
subtract the average of one from the average of the other and 4) do this many times…

~0 > Or < 0

The width of the 
distributions  of averages 
depends on the size of the 
sample

If the averages are not equal then 
the distribution will be centered 
away from zero.

Do these distributions have 
the same average?

In General, What’s Our Goal



More Specific Goal

• Let’s say we want to design a test to determine what effect our test 
factors (Aircraft Altitude, Aircraft Speed, Target Type) and their 
interactions have on our detection range.

• We’ll need to answer a few questions to help size the matrix.

Distribution if 
difference in 
averages is zero

Distribution if 
difference in averages 
is greater than zero

How much of an effect do we care about (signal)?

How wide do we think these distributions might be (noise)?

~0 > 0



Signal

0 0+Signal

X XXX X

Easy decision: 
No evidence that 
difference in 
averages is as large 
as the desired signal

Easy decision: 
It is very likely that 
there is a difference 
in averages

Expected distribution if 
averages are equal

Expected distribution if 
averages are not equal

NOT an easy decision. The 
sample could come from 
either distribution.  There is 
notable risk of making an 
incorrect conclusion.

α
β

α: The risk of mistakenly 
concluding there is a 
difference in the 
averages. Confidence is 
equal to 1- α.

β: The risk of mistakenly 
concluding there is no 
difference in the averages.  
Power is equal to 1- β.

If we conduct more tests we can reduce the 
width of the distributions (noise).  This 
results in less area of overlap; therefore, 
less overall risk.  In doing so, we have 
traded more cost for less risk.

Signal, Noise, Risk, and Cost



Summary (1 of 2)
• DOE does not make obsolete the need for technical expertise.  It allows us to get 

the most information from technical knowledge and testing.

• DOE encompasses a very wide variety of methods and is much more than the 
factorial matrices commonly taught

• DOE allows us to efficiently identify the effects of input variables on an output

• Box pushing example

• Allows us to evaluate interactions between input variables

• DOE is applicable to testing that involves hardware, software, and simulation

• Most effective when test designs for these activities support each other

• Not just at the system level

• The earlier we use DOE in subsystem and component design and testing, the greater the 
benefit
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Summary (2 of 2)
• We can evaluate the likelihood that a test will allow us to identify variables with 

significant effect (known as power)

• In test planning, we can trade power, confidence, effect size, and sample size

• For a given sample size increasing confidence decreases power

• Increasing sample size will result in lower variation which has an effect on 
power and confidence

• Non-orthogonal variables result in artificially inflated variances when 
examining multiple variables

• Inflated variances result in lower power (more likely to miss a significant effect)

• Design of experiments ensures that the variance is not artificially inflated.  
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Backup Slides
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Two-Level Orthogonal Array Factor Assignment

49
Source: P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd Ed, McGraw Hill, 1996, p. 284

OA # Factors Use Column Numbers Resolution

L4 1-2 1,2 High

3 1,2,3 Low

L8 1-3 1,2,4 High

4 1,2,4,7 Moderate

5-7 1,2,4,7,(3,5,6)* Low

L12 1-11 1-11 Low

L16 1-4 1,2,4,8 High

5 1,2,4,8,15 Moderate

6-8 1,2,4,7,8,(11,13,14) Moderate

9-15 1,2,4,7,8,11,13,14,(3,5,6,9,10,12,15) Low

L32 1-5 1,2,4,8,16 High

6 1,2,4,8,16,31 Moderate

7-16 1,2,4,8,16,31,(7,11,13,14,19,21,22,25,26,28) Moderate

17-31 1,2,4,7,8,11,13,14,16,19,21,22,25,26,28,31,(3,5,6,9,10,12,15,17,18,20,23,24,27,29,30) Low

Resolution  is and indciation of the amount of confounding in a column

*Column numbers in parentheses may be assigned in any order to achieve the indicated resolution; column numbers 

not in parentheses must be used first.



Three-Level Orthogonal Array Factor Assignment

50
Source: P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd Ed, McGraw Hill, 1996, p. 285

OA # Factors Use Column Numbers Resolution

L9 1-2 1,2 High

3-4 (1,2,3,4) Low

L18 1-8 1-8 Low

L27 1-3 1,2,5 High

4 1,2,5,(9,10,12,13) Moderate

5-13 1,2,3,4,5,(6-13) Low

Resolution  is an indiciation of the amount of confounding in a column

*Column numbers in parentheses may be assigned in any order to achieve the 

indicated resolution; column numbers not in parentheses must be used first.



Example of Robust Design Analysis
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Source: S.R. Schmidt and R.G. Launsby, Understanding Industrial Designed Experiments, 
Air Academy Press, Colorado Springs, Colorado, 1992, p. 5-31



Additional Orthogonal Arrays
L12 / L9  / L18  /  L27
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Source for Orthogonal Arrays & Linear Graphs: Taguchi, G., Chowdhury, S. 
and Wu, Y. (2004) Appendix C: Orthogonal Arrays and Linear Graphs for 
Chapter 38, in Taguchi's Quality Engineering Handbook, John Wiley & Sons, 
Inc., Hoboken, NJ, USA. doi: 10.1002/9780470258354.app3
http://onlinelibrary.wiley.com/doi/10.1002/9780470258354.app3/pdf

http://onlinelibrary.wiley.com/doi/10.1002/9780470258354.app3/pdf
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