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• US Army Aviation Engineering 

Directorate

– Airworthiness Authority for the Army

– TRL 7-9 Development and Qualification

• Dynamics Branch

– Health and Usage Monitoring Systems 

and Aviation Data Science Team Lead

• Bachelor and Master of Science in 

Mechanical Engineering

– Dynamics & Modal Analysis

– I’m not a 

• Researcher 

• Statistician or

• Data scientist

Background
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Who is AMRDEC?

U.S. Army Aviation and Missile Research, Development, and Engineering

Center provides increased responsiveness to the nation's Warfighters through 

aviation and missile capabilities and life cycle engineering solutions.

• Headquartered at Redstone Arsenal, AL

• 5 Directorates

• 9,000 scientists & engineers

• $2.45 billion in reimbursable funding, FY 16

• $339 million in Science & Technology funding, FY 16

AMRDEC Priorities

Strategic Readiness – provide aviation and weapons technology and systems 

solutions to ensure victory on the battlefield

Future Force – develop and mature Science and Technology to provide 

technical capability to our Army’s (and nation’s) aviation and weapons 

systems

Soldiers & People – develop the engineering talent to support both Science 

and Technology and materiel enterprise
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• Health and Usage Monitoring Systems (HUMS)

– The child of FOQA (Flight Operations Quality Assurance)

• True Positive: Sensitivity; HUMS correctly identified a faulted state

– False Negative: Missed Detection

• True Negative: Specificity; HUMS correctly identified a healthy state

– False Positive: False Alarm

• Bookmakers Informedness = TPR – FPR

• Ground Truth 

– Assets and Examples

• ROC: Receiver Operating Characteristic

• Epicyclic Transmission: Planetary Gearbox

The Lexicon of Aviation Data 

Science

Healthy Faulted

Threshold
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What is HUMS?

Health and Usage Monitoring System

Flight Operations Data (Parametric Data)

e.g. altitude, pitch rate, engine torque

Sensor Data

Burst data (High Frequency)

e.g. accelerometers

Continuous data (Low Frequency)

e.g. oil debris monitor
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• Univariate exceedance monitoring during flight

– Oil debris monitoring

• Health/Usage monitoring

– Drive train vibration

– Rotor vibration

– Flight regime classification

• Accident Investigation

– Cockpit voice

– Flight data recording

What do we use it for?
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Problems with HUMS?

Healthy Faulted

Threshold

Exclusively uses univariate exceedance classification methods 

which are often prone to a False Positive/Negative problem.

• The problem is temporal

• The variables are noisy

• Health is often relative

• Anomalous does not always mean broken or dangerous

• It does not account for other flight variables
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An Example: Change Detection

300 350 400 450 500 550 600 650
0.5

1

1.5

2
Envelope RMS

~50 hours prior to chip light

The aircraft is not separated from 

the fleet
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Case Study: 

Transmission Internal Failure

Epicyclic Transmission Spiral Bevel Transmission
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Can vibration transfer across an 

epicyclic transmission?
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How well are we actually doing?
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Can we improve?
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What about spiral bevel 

transmissions?
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What are we doing to fix the 

problem?

Remember the Emergency Medical Hologram?
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What are we doing to fix the 

problem?

Please state the nature of the medical emergency

Remember the Emergency Medical Hologram?
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What are we doing to fix the 

problem?

Please state the nature of the engineering emergency

Remember the Emergency Medical Hologram?
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We live in a common place with other industries when we talk about this topic:

– Medicine

– Nuclear Power

– Aviation

Development of multivariate machine learned diagnostics and prognostics 

requires

a process…

Machine Learning in a critical 

environment
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Our Machine Learning Process
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Our Machine Learning Process

Our Machine Learning Axioms for Aviation

• Stirring the pile, is training

• Model evaluation, is training

• Model selection, is training

• Model validation, is training

• Looking under the hood, is training

• Stirring stops prior to testing

• Testing is done by the customer on a clean 

dataset



20

• We put together a general path forward we expect to see when we take on 

a machine learning task.

• Demonstrated in our NGB internal failure classification work

– Cleanse

– Partition

– Train

– Validate

– Select

– Test

– Deploy

• We built a flow chart!

How did we implement our axioms 

on a real aviation problem?



21

Aviation Machine Learning Process

Train Models
Curate and Clean 

Data

Define 
Airworthiness 
Requirements

Determine Best Model

Define the Model 
Space

Final Training 
Opportunity for Best 

Model

Testing and Delivery 
of Final Model

Partition the data 
into: Training – 

Validation – 
Testing 

Generate Problem 
Statement and 

Identify Available Data

Evaluate Performance 
in the field

Is diagnostic 
performing?

Consider new 
development process

Sufficient assets and labeled 
data to procede?

Curation Partitioning Training Validation

Selection

Testing

Modifications to Data 
or Tools required?

Deploy and 
Evaluate
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Aviation Machine Learning Process

Train Models
Curate and Clean 

Data

Define 
Airworthiness 
Requirements

Determine Best Model

Define the Model 
Space

Final Training 
Opportunity for Best 

Model

Testing and Delivery 
of Final Model

Partition the data 
into: Training – 

Validation – 
Testing 

Generate Problem 
Statement and 

Identify Available Data

Evaluate Performance 
in the field

Is diagnostic 
performing?

Consider new 
development process

Sufficient assets and labeled 
data to procede?

Curation Partitioning Training Validation

Selection

Testing

Modifications to Data 
or Tools required?

Deploy and 
Evaluate

What people think when I say machine learning



23

Aviation Machine Learning Process

Train Models
Curate and Clean 

Data

Define 
Airworthiness 
Requirements

Determine Best Model

Define the Model 
Space

Final Training 
Opportunity for Best 

Model

Testing and Delivery 
of Final Model

Partition the data 
into: Training – 

Validation – 
Testing 

Generate Problem 
Statement and 

Identify Available Data

Evaluate Performance 
in the field

Is diagnostic 
performing?

Consider new 
development process

Sufficient assets and labeled 
data to procede?

Curation Partitioning Training Validation

Selection

Testing

Modifications to Data 
or Tools required?

Deploy and 
Evaluate

What I’ve realized is the important part of 

machine learning …
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ROC Curves
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How did it perform in cross 

validation?
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SPECTRUM SURROGATE 

MODELING FOR 

VIBRATION PROBLEMS

Dr. Andrew Wilson
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• Army Rotorcraft Vibration Problems

– Mechanical Diagnostics

– Aeroelastic Dynamics

• Three applications of surrogate modeling

– Sandia/Army Collaboration

• MD: Sensor Redundancy

• Aeroelastic: Surrogate DNS

– Army Sustainment Innovation

• MD: Spectrum Reconstruction

Overview
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Background

Sandia/AED Collaboration:

Applying CNNs to frequency-

response modeling
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• Turbulent Boundary 

Layer Wall PSD

– LES is relatively cheap 

but misses near-wall 

dynamics

– DNS is very expensive 

but high fidelity

– Can CNNs use free-

stream PSDs to predict 

wall PSDs?

• Axial/Vertical Sensor 

Redundancy

– Two accelerometers 

fielded to all aircraft in 

perpendicular axes

– Sensors + wiring costly 

(lbs on aircraft)

– Years of collected 

operational spectra

– Can CNNs use axial axis 

spectrum to predict 

vertical axis spectrum?

Test Problem Background
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AED Results:

Surrogate Model

for Sensor
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AED Perpendicular Axis: Results

• TODO: Input, predicted, true plot(s)
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AED Perpendicular Axis: Results
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RMS vs Max

Linear vs Log

High RMS error in log-spectrum: 

Lots of missed values across the spectrum

Low max linear error: 

Overall spectrum is low-valued, plus peaks are 

captured at correct amplitudes if shifted 

frequencies.
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RMS vs Max

Linear vs Log

Low RMS error in log-spectrum: 

Log-spectra very closely align, with a small amount 

of log-error at one peak

High max linear error: 

Missed the amplitude of very important peak by 

factor of 3
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Sandia Results:

Surrogate Model

for DNS
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1. Mach 2.0 compressible flat plate turbulent boundary layer

2. Low-dissipation 5th order upwind biased flux-

reconstruction scheme 

3. Fourth order explicit Runge Kutta time integration

4. 100.7 M mesh cells

5. Near wall resolution: Δx+ < 5, Δy+ < 0.2, Δz+ < 4

6. 1075  <  ReΘ  < 1310

7. Run for > 1200τ (where τ = δ0/ U∞)

Sandia 

DNS Data Set
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Sandia Wall PSD Results
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Sandia Wall PSD Results
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Sandia Wall PSD Results
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Conclusions and Future Work

• Pursue max-error loss functions for NN training

• Need to further explore validation/evaluation criteria

• Powerful and promising methods

• Performance of all methods 

similar

• Can predict PSD at wall, 

even out to y+ = 200

• High frequency predictions 

require further work

• Data partitioning 

methodology

• Definite difference in 

performance

• Depth of NN important?

• Max-errors unacceptable in 

linear domain

• RMS errors very good
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AED Project:

Surrogate Model

For Spectrum 

Reconstruction
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“Raw” vibration data

• Large data storage (?)

• Sensor data

• 30% of capture events

• Widely understood

• 8,193 point spectra

Condition indicators (CIs)

• Reduced storage (?)

• Features

• 100% of capture events

• Highly specialized

• 1,500 CIs

The “Raw Data” Problem
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• IVHMS computes 1000’s of CIs

– Main Mod: >4,000 CIs generated from 5 

sensors.

– One Main Mod sensor: 

• >1500 CIs total

• >580 CIs available for essentially all cases

• Question: Is there enough information in 

these CIs to reconstruct a reasonable 

approximation to the original spectrum?

Problem/Opportunity
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• One “semester” (half-year) of data

– 90,000 acquisitions with raw data 

(spectra)

– 580+ CIs (including sensor health 

CIs)

– ~20 additional useful variables 

(Torque, Nr, …)

• Regression model:

– Inputs are the CIs

– Outputs are the spectrum bin values

• Ideal machine learning problem

– Surrogate model for math, not 

physics: CI computation

– Non-independence of frequency 

features

Machine Learning

Machine learning,

a.k.a., 

“black magic”
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Model Architecture and Training

Statistical 
Scaling

Feature 
Engineering 

(Kernel Approx., 
Log-scale, SqRt)

Ridge 
Regression

Model Architecture

CIs and 
Flight Variables

Frequency 
Bin 

Amplitudes

Filter for Data 
Quality

Training 
Data
80%

Test Data
20%

HUMS Database

Build CI and 
Spectrum Data 

Matrices

Model Training / 
Tuning

Model Selection
Model Testing 

and Acceptance

Data Setup Process

Eliminate >20 
kHz frequency 

bins
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Results
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Results
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Results

99th percentile error
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• Perceived value of data history / tear-down analyses

– Value of a tear-down driven by data availability; three cases:

• No data

• No raw data

• Full raw data

– Many tear downs were not performed or (if performed for other 

reasons) were judged to be uninformative due to the lack of raw 

data

– Present work brings value of no raw data to almost the same value 

as raw data

• Perceived value of “data reduction” (fewer variables stored)

– Data reduction is not needed (full raw vibe data < 10% of total data)

– Data reduction not all that pronounced 

• Too many variables for engineers/maintainers to consider

• Not significant reduction of data size vs full spectrum

Implications



50

• Data-driven surrogate modeling can be 

highly effective for problems that are driven 

by vibration spectra.

• Both simple linear models and incredibly 

complex deep neural network models can be 

used very effectively.

Conclusions
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• Cal Tech: “Learning From Data”

– FREE on YouTube

– https://work.caltech.edu/telecourse

• NASA work in Flight Operations Data and the Future ATC System

– https://www.nasa.gov/content/air-traffic-operations-lab-answering-big-questions-about-

the-future-of-air-travel

• Journal of Aerospace Information Systems

– https://arc.aiaa.org/loi/jais

• SIGKDD (Association for Computing Machinery: Special Interest Group on Knowledge 

Discovery and Data Mining)

– http://www.kdd.org/

• ASME V&V Symposium

– https://www.asme.org/events/vandv

Good References

https://work.caltech.edu/telecourse
https://www.nasa.gov/content/air-traffic-operations-lab-answering-big-questions-about-the-future-of-air-travel
https://arc.aiaa.org/loi/jais
http://www.kdd.org/
https://www.asme.org/events/vandv


53

Thank you for your time 

and attention
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AMRDEC Web Site

www.amrdec.army.mil

Facebook

www.facebook.com/rdecom.amrdec

YouTube

www.youtube.com/user/AMRDEC

Twitter

@usarmyamrdec

Public Affairs

AMRDEC-PAO@amrdec.army.mil


