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Actuarial Science 
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What is Actuarial Science? 
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What is Actuarial Science? 

• Actuarial Science – the discipline that applies 
mathematical and statistical methods to model and 
to assess risks, usually in insurance and finance.  
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What are Some Typical Actuarial Models? 

• Occurrence Models – probability models that regress 
binomial occurrence versus transformed explanatory 
variables, i.e. Logit or Probit. 

– Logit,  

 

 

– Probit,  
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What are Some Typical Actuarial Models? 

• Frequency Models – discrete count models that 
regress counts versus explanatory variables, i.e. 
Poisson. 

– Poisson Model for Counts 
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What are Some Typical Actuarial Models? 

• Severity/Duration Models – continuous models that 
regress dollar amounts or time versus explanatory 
variables, i.e. Pareto, Weibull, Exponential. 

– Exponential Model for Duration 
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The mean and standard deviation of an 

exponential distribution are equal 



What are Some Typical Actuarial Tools? 

Period Life Table, 2007 

Exact 
age 

Male Female 

Death  
probability a 

Number of 
lives b 

Life 
expectancy 

Death 
probability a 

Number of 
lives b 

Life 
expectancy 

0 0.007379 100,000 75.38 0.006096 100,000 80.43 

1 0.000494 99,262 74.94 0.000434 99,390 79.92 

2 0.000317 99,213 73.98 0.000256 99,347 78.95 

3 0.000241 99,182 73.00 0.000192 99,322 77.97 

4 0.000200 99,158 72.02 0.000148 99,303 76.99 

5 0.000179 99,138 71.03 0.000136 99,288 76.00 

6 0.000166 99,120 70.04 0.000128 99,275 75.01 

7 0.000152 99,104 69.05 0.000122 99,262 74.02 

8 0.000133 99,089 68.06 0.000115 99,250 73.03 

9 0.000108 99,075 67.07 0.000106 99,238 72.04 

10 0.000089 99,065 66.08 0.000100 99,228 71.04 

11 0.000094 99,056 65.09 0.000102 99,218 70.05 

12 0.000145 99,047 64.09 0.000120 99,208 69.06 

13 0.000252 99,032 63.10 0.000157 99,196 68.07 

14 0.000401 99,007 62.12 0.000209 99,180 67.08 

15 0.000563 98,968 61.14 0.000267 99,160 66.09 

16 0.000719 98,912 60.18 0.000323 99,133 65.11 

17 0.000873 98,841 59.22 0.000369 99,101 64.13 

18 0.001017 98,754 58.27 0.000401 99,064 63.15 

19 0.001148 98,654 57.33 0.000422 99,025 62.18 

20 0.001285 98,541 56.40 0.000441 98,983 61.20 
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What are Some Typical Actuarial Tools? 

Predictive Analytics for BIG DATA 
 

Regression Based 
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Project Data 
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Can Actuarial Science be Applied to RAM? 

• In early 2011, AMRDEC asked if Actuarial Science can be 
applied to enhance RAM initiatives. 

• On the surface, the answer seems to be obvious. 
– Manipulate BIG DATA. 

– Create life table for parts. 

– Provide predictive analytics based on external environment factors. 

• But…  
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• Part Life vs. Human Life (People Don’t Come Back) 

Challenges 



Pseudo Parts divided by failure 
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• 2410 Database 
– Copy 1,2,3 

– Flight Hours, TailNo, Model, Dates, UIC,  Time Since New, Time Since 
Last Install, Overhaul, Time Since Overhaul, etc. 

• 1352 Database 
– TailNo, Dates, Hours by TailNo 

• CBM HUMS database 
– TailNo, Dates, many environmental factors 

• Intersection: TailNo & Date 

 
 

 

October 30, 2013 www.risklighthouse.com 15 

Data Sets Used 
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Illustration of Survival-Type Data 



Year 
Number in Study at 

Beginning of Year 

Number Died 

During Year 

Number Withdrawn 

(Censored) 

[0-1) 200 3 16 

[1-2) 181 5 14 

[2-3) 162 6 13 

[3-4) 143 7 11 

[4-5) 125 7 12 

[5-6) 106 5 9 

[6-7) 92 6 8 

[7-8) 78 8 5 

[8-9) 65 7 6 

[9-10) 52 7 7 

[10-11) 38 6 7 

[11-12) 25 9 6 

[12-13) 10 7 3 
October 30, 2013 www.risklighthouse.com 17 

Necessity to Account for Censored Data 
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Say we were asked to calculate the probability 

that a patient would survive 5 years.   One 

incorrect way to calculate this probability is to 

throw out the data from the withdrawn patients 

(censored).   

 = 66.3% Chance to Survive 5 Years 

Incorrect Method #1 
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Another incorrect way is use 200 as the initial 

population, but to assume all the censoring falls 

at the end of the study. 

= 86.0% Chance to Survive 5 Years 

Incorrect Method #2 
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Equation 1 leads to an overly pessimistic survival 

probability, while equation 2 leads to an overly 

optimistic survival probability.   

 

The true survival probability is somewhere 

between these two incorrect estimates.  This 

shows that statistical survival analysis techniques 

are necessary.   

Too optimistic or pessimistic? 



Kaplan-Meier Estimator 
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The Kaplan–Meier estimator is the nonparametric maximum 

likelihood estimate of the survival function, S(t). The Kaplan Meier 

is different from the empirical distribution in that it can take into 

account censored data.  
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Kaplan-Meier Estimator 
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Year 
Number in Study at 

Beginning of Year 

Number Died During 

Year 

Number Withdrawn 

(Censored) 

KM Survival 

Function 

[0-1) 200 3 16 98.5% 

[1-2) 181 5 14 95.8% 

[2-3) 162 6 13 92.2% 

[3-4) 143 7 11 87.7% 

[4-5) 125 7 12 82.8% 

[5-6) 106 5 9 78.9% 

[6-7) 92 6 8 73.8% 

[7-8) 78 8 5 66.2% 

[8-9) 65 7 6 59.1% 

[9-10) 52 7 7 51.1% 

[10-11) 38 6 7 43.0% 

[11-12) 25 9 6 27.5% 

[12-13) 10 7 3 8.3% 
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What is censored? 

A censored observation occurs when the failure 

condition is not met.  For helicopter parts, are 

we talking about supply or reliability?   

 

We determine censoring by chargeable vs. non-

chargeable failure codes.  Which failure codes 

are chargeable for supply, and for reliability? 
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Supply Failure Event 

A failure from Supply’s perspective is one that 

takes the part out of commission and requires 

repair.  The non-chargeable failure codes with 

respect to supply failure are limited to those that 

represent no actual failure. 

 

Non-Chargeable Examples: 

FC 799 – Serviceable, no defect 

FC 804 – Removed for scheduled maintenance 
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Reliability Failure Event 

A failure from Reliability’s perspective is one 

that due to inherent properties of the part, rather 

than environmental, combat, or misuse.  The 

non-chargeable failure codes with respect to 

reliability failure include far more failure codes. 

 

Non-Chargeable Examples: 

FC 731: Battle Damage 

FC 917: Bird Strike 



REARM Engine 
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R.E.A.R.M. 

Repair Event Analysis and Recording Machine 



REARM Engine 
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•Uses the R statistical programming tool 

 

•Input Excel 2410 and 1352 database 

 

•Automatically correct (some) errors in data 

 

•Output a list of clean sequences with 

accompanying data 

 

 



Parametric Distributions 
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Possible Distributions 

• Normal 

• Lognormal 

• Exponential 

• Beta 

• Weibull 

• Gamma 

• Negative Binomial 

• Cauchy 
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Possible Distributions 
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Survival Analysis Tools – KM Curves 
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Comparison of Parametric Survival Functions Zero-Truncated 



Survival Regression 
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Survival Regression 

Fits a parametric survival distribution to the model (Gaussian, 

Weibull, Logistic, etc.)   

   Weibull CDF 

 

 

 

 

 

 

 

This regression can fit a lambda (shape) to a survival distribution, 

then adjust k (scale) to the effects of different covariates. 

  

       
        

      



Weibull Parameters- Adjusting Scale 
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Survival Analysis Tools – KM Curves 
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Other Repair Facility 

Repair Facility A 

Repair Facility B 

Repair Facility C 

Repair Facility D 

Repair Facility E 

Repair Facility F 



Flexible Survival Regression 

• Parametric Models have advantages for 
– Prediction. 
– Extrapolation. 
– Quantification (e.g., absolute and relative differences in risk). 
– Modelling time-dependent effects. 
– Understanding. 
– Complex models in large datasets (time-dependent effects /multiple time-scales) 
– All cause, cause-specific or relative survival. 

• The estimates obtained from flexible parametric survival models are incredibly 
similar to those obtained from a Cox model. 

• An important feature of flexible parametric models is the ability 
• to model time-dependent effects, i.e., there are non-proportional 
• hazards 

– Time-dependent effects are modeled using splines, but will 
– generally require fewer knots than the baseline. 
– This is because we are now modeling deviation from the baseline hazard rate. 
– Also possible to split time to estimate hazard ratio in different intervals. 
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Constructing the Flexible Parametric Model 
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• Piecewise Hazard Function 

• No Continuity Corrections 

• Function Forced to Join at Knots 

• Continuous at First Derivative 

• Continuous at Second Derivative 



Piecewise Hazard Function 
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No Continuity Corrections 
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Function Forced to Join at Knots 
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Continuous at First Derivative 
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Continuous at Second Derivative 
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Risk Classification 
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Risk Classification Chart – Life Insurance 

Category Preferred Standard Substandard 

Smoking Non-Smokers Non-Smokers Smokers 

Body Mass Index 18.5-24.9 25 to 29.9 Less than 18.5 
Greater than 30 

Driving Record No Tickets No Major Tickets 
(DWI) 

Many Tickets or a 
Major Ticket 



Conditional Inference 

• Algorithm 
– Variable Selection Step 1:  

• Permutation based significance test in order to select the variable, 

• Choose  the covariate with lowest p-value below than a pre-specified 
significance value, i.e. 0.05 

– Choosing the p-value is a unique parameter which determines the size of the tree 

– P-values are used to make comparisons between variables that are categorical and numerical 

– Splitting Procedure Step 2: 
• Explore all possible splits 

• Goodness of a split is evaluated again by a permutation –based test 

– Recursively repeat steps 1 and 2 until no more splits can be 
determined 
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Conditional Inference Tree 
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Conditional Inference Tree 
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Cox Proportional Hazards Model 

October 30, 2013 47 www.risklighthouse.com 

Alternatively, we can differentiate levels of risk factors using the  

Cox Proportional Hazards model 

 

The Cox Proportional Hazards model is as follows: 

  

 

 

 

Where:         is the hazard rate of a component i at time t, 

       is the baseline hazard rate at time t, 

     is the coefficient of the first covariate of interest, 

     is the first covariate of interest, 

     is the coefficient of second covariate of interest, and 

     is the second covariate of interest.  
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Difference in Hazard Rate by Repair Level 
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Cox Proportional Hazards by Previous Repair Level 

    n=12053 number of events=4113 

Baseline = UH-60A 

Beta exp(Beta) P-Value 

MH-60K 0.19473 1.21498 0.00381 ** 

UH-60L -0.27767 0.75754 0.112 

Significance codes:   0   ‘***’,    0.001    ‘**’,    0.01    ‘*’,    0.05    ‘.’ 



Constructing the Parametric Model 

• Before the data of the old parts are fitted to the Weibull distribution, they 
are first split into 4 different classes (New, Preferred, Standard, and 
Substandard).  

• The new parts with Times since new (TSN) values of zero are segmented 
from the other old parts and classified as new. For the old parts, they are 
classified as ether “preferred”, “standard”, or “substandard” depending on 
four risk factors. 

• These four risk factors are: 
– Helicopter Model 

– Previous Repair Facility 

– Times since new (TSN) 

– Previous Chargeable Failure Code 

• RLH then uses the Cox Proportional Hazard Regression to measure the 
average hazard rate for each levels of the four risk factors and then rank 
them. The results are displayed on the next slide. 
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Constructing the Parametric Model 

Risk Factors Rank Elements 

Previous Repair Facility (UIC) Above, Above Average (AAA) UIC-A 

Above Average (AA) UIC-B, UIC-C,  UIC-D 

Average (A) All Other UICs  

Below Average (BA) UIC-F 

Helicopter Model Above, Average (AA) HH-60G, EH-60L, UH-60M 

Average (A) UH-60L and all other helicopter models 

Below Average (BA) MH-60K 

Previous Failure Code Average (A) Previous Failure Code is not 2 (Air Leak) or 520 (Pitted) 

Below Average (BA) Previous Failure Code is 2 or 520 

Time Since New (TSN) Above Average (AA) Less than 1500 flight hours 

Average (A) Between 1500 and 3500 flight hours (inclusive) 

Below Average (BA) Over 3500 flight hours 
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Constructing the Parametric Model 
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• There are 72 possible different combinations of these risk factors and each 
one is labeled as  category 1,2, …., 72. 

 

 

 

 

 

• The magnitude of each risk factor’s effect on survival rate may differ. The 
idea of creating these categories is to evaluate the overall effect of all four 
risk factors. These 72 categories are entered into a Cox PH regression 
equation with baseline set as category 32 and the results are shown in the 
next slide. 

Category Previous UIC Time Since New 

(TSN) 

Previous Failure 

Code 

Model 

8 AA A A AA 

12 A AA A AA 

32 (Baseline) A A A A 



Constructing the Parametric Model 
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• The categories with a hazard rate that is lower than the baseline on 
average are put into the “Preferred” class, the categories with a hazard 
rate that is higher than the baseline on average are put into the 
“Substandard” class, and all other categories are put in the, “Standard” 
class. The new class contains all the new parts, regardless of their risk 
factors. RLH then constructed the parametric models by fitted the Weibull 
distribution to each of the four classes. 

Class Categories Included Number of 

Observations 

Class 

New All Parts with TSN = 0 4241 New 

Preferred 7, 19, 20, 25, 26, 27 ,29, 31 1821 Preferred 

Standard All Other Categories 3200 Standard 

Substandard 33, 35, 36, 38, 44, 50 896 Substandard 



Parametric Model: Goodness of Fit 
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Parametric Model: Validation Testing 
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• The objective is to test if the four parametric models serves as an accurate 
representation of the real data. 

• The “Train” data set, which 65% of the data randomly chosen, is fitted to a 
Weibull distribution to create a parametric model. The rest of the data, 
the “Test” data set, is used to plot a KM curve.  

• The parametric curve is then compared with the KM curve. 

• RLH then conducts the Kolmogorov-Smirnov (KS) Test between the KM 
and the parametric curve.  

• The KS test can compare a sample data set with a reference distribution 
and determine the how likely that sample data is drawn from the 
reference distribution. In this case, the sample data is the “Test” data set  
and the reference distribution is the parametric model. 



Parametric Model: Validation Testing 

Results 
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Parametric Model: Validation Testing 

Results 
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• KS test results: 

 

 

 

 

 

 

• The null hypothesis is that the sample data is drawn from the reference 
distribution. The results shows that the p-values for all four models are 
greater than the alpha, 0.05. Therefore, the null hypothesis is not rejected 
and the test indicates that the “Test” data set is likely to have been drawn 
from the parametric model.  

Class Test Statistic (D) P-Value 

New  0.0367 0.8355 

Preferred 0.0262 0.9113 

Standard 0.0356 0.8688 

Substandard 0.0593 0.7655 



Monte Carlo Method 

And 

Inventory Simulation 
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Monte Carlo Simulation Basics 
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Initial Conditions 

Simulation 

Process 

Random 

Number Input 

Ending Condition 

Repeat for 

Duration 

Repeat for Each 

Simulation 

Extract Mean, 

VaR, TVaR 



Monte Carlo Simulation Basics 
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http://genedan.com/tag/brownian-motion/ 

Heads - 50% 

Tails    - 50% 

50 Flips per 

Simulation 

Simulation 

Time 

1 10 

20 

250 

250 

http://genedan.com/tag/brownian-motion/
http://genedan.com/tag/brownian-motion/
http://genedan.com/tag/brownian-motion/


Simulation Basics: Value at Risk and 

Conditional Value at Risk 
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In our simulation, assets might be considered to be spare inventory. 
http://www.nematrian.com/R.aspx?p=TailValueAtRisk 

http://www.nematrian.com/R.aspx?p=TailValueAtRisk


Supply Simulation Initial Conditions 

and Assumptions 

• 200 Helicopters or ‘Slots’ of random frame composition 

• 220 Parts with randomized covariates (TSLI, UIC) 

• Method to classify parts into risk categories 

• Hazard rate parameters for risk classes estimated from 2410 

• Average flight hours per month for each airframe based on 
1352 Dataset 

_________________________________________________ 

• Monthly simulation, deaths/installs happen at end of month 

• On failure parts have 20% chance of “True Death” 

• Some failures are minor and repairs happen within a month 
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• Since simulation is done in 1 month intervals, survivorship is 
only calculated assuming part survives the average flight 
hours per month of the airframe 
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Standard Class KM Curve        N = 3276

Substandard Class KM Curve  N = 526

tPx = P(x + t | x + t > X) = S(x + t) / S(X) 

tQx = 1 - tPx 

S(x) 
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Supply Simulation Process 
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Supply Simulation: Sample Run 

and Results 

____Monte Carlo Sample Statistics____________________ 
• Percent of Simulations where inventory ran out:  5.9% 
• Average number of Failures:    36.2 
• Average Instant Repair rate on Failure:   21.5% 
• Average Deaths:     7.3 
• Average Remaining Inventory:    5.2 

 
____Tail Statistics __________________________________ 
• 95% Percentile of Failures:    46 
• Conditional Expected Value of Failures over  

95th percentile:     48.2 
• 5th Percentile of Remaining Inventory:   -1 
• Conditional Expected Value of Remaining  

Inventory over 95th percentile:    6.3 
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Supply Simulation: Improvements 

• Matching assumptions and process to general practices 

• Reason for Failure (Specific Fail Code) 
– Associated distribution for repair times 

• Nonchargeable removals  
– Allows parts to change helicopters without failing first 

• Back testing Methods 
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Questions 
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4 
What failure code is this!? 



Thank you! 
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Contact 
 Evan Leite 

Suite 315 

3405 Piedmont Road NE 

Atlanta, GA 30305 

Phone: 678-732-9112 

evan.leite@risklighthouse.com 

www.risklighthouse.com 

mailto:shaun.wang@risklighthouse.com
http://www.risklighthouse.com/

