

Reliability Centered Maintenance Applied to Achieve Best Life Cycle Costs

Dr Bill Wessels PE CRE Principal Research Scientist bill.wessels@uah.edu

Reliability & Failure Analysis Laboratory <u>http://rfal.uah.edu</u>

Dr Bill Wessels PE CRE

- Experience:

- 1975 1989 Tramp Engineer, mining mobile machinery & process equipment life-cycle sustainability
- 1989 2005 Contractor [Biomedical Devices, DoD and NASA] design-forreliability, RCM
- 2005 Research in design-forreliability & life-cycle sustainability for mechanical and structural components

Credentials

- BS USMA, West Point '70
- PhD Reliability Systems Engineering, UAHuntsville '96
- PE MechE, Pennsylvania, '82
- CRE, ASQ, '96
- Author Practical Reliability engineering and Analysis for System Design and Life-Cycle Sustainment, CRC Press, 2010

Introduction

- Reliability-centered maintenance serves to preserve system functionality by performing scheduled maintenance actions that prevent unscheduled system downing events during scheduled operations
- RCM achieves its objective by developing an understanding of critical part failure
- Understanding part failure is manifested by the ability to measure the consumed life of a critical part
- Scheduled maintenance is defined by application of a risk threshold to the consumed life

Top Level RCM Path

Develop a rank ordered critical items list - CIL
 Perform reliability failure analysis to identify:

- Sources of failure mechanisms (Conditions of use)
- Failure mechanisms action on the critical part (Cause of part failure)
- Failure modes (Damage to part)
- Failure effects part (Symptoms of the damage)
- Failure effects assembly (Consequences of part failure)
- > Select appropriate RCM Path
 - CBM
 - TDM
 - SDM

- Consumed life characterized by a condition that defines the failure mode/damage
 - Change in shape
 - Change in geometry
 - Change in material properties
- > Method for investigating the damage, NDI
 - Visual inspection of condition indicator
 - Manual measurement of condition indicator
 - Sensor measurement of condition indicator
- Metrics that characterize the damage
 Risk Threshold

Notional Linear CBM Concept

Decreasing Condition Indicator

Re	Regression Statistics						RELIABILITY AND FA ANALYSIS LABORA THE UNIVERSITY OF ALABAMA IN	
r		0.982						
r^2		0.963						
S	td Err	4.84						
n		18						
/	ANOVA	df	55	MS	F	P-value		
Re	gressior	1	9844.90	9844.90	420.94	0.00		
Re	sidual	16	374.21	23.39				
Т	otal	17	10219.11					
	Coefficients		Std Err	t Stat	P-value	LCI 95%	UCI 95	%
Ir	tercept	144.05	2.38	60.57	0.00	139.00	149.0	09
Ir	sp Int	-4.51	0.22	-20.52	0.00	-4.97	-4.(04

Research Institute

Diverging Condition Indicator

Regression St					RELIABILITY AT ANALYSIS LAT THE UNIVERSITY OF ALA	
r 0.089						
r ²	0.008					
Std Err 25.172						
n						
ANOVA df		55	MS	F	P-value	
Regression	1	80.92	80.92	0.128	0.725	
Residual	16	10138.19	633.64			
Total 17		10219.11				
Coefficie	Std Err	t Stat	P-value	LCI 95%	UCI 95%	
Intercept	97.34	12.38	7.86	0.000	71.10	123.58
Diverging 0.41		1.14	0.36	0.725	-2.02	2.83

Research Institute

Converging Condition Indicator

Regression	Statistics					RELIABILITY AND ANALYSIS LABO THE UNIVERSITY OF ALABA
r	0.089					
r ²	0.008					
Std Err	25.17					
n	18					
ANOVA df		55	M5	F	P-value	
Regression	1	80.92	80.92	0.128	0.725	
Residual	16	10138.19	633.64			
Total	17	10219.11				
Coeffic	cients	Std Err	t Stat	P-value	LCI 95%	UCI 95%
Intercept	105.10	12.38	8.49	0.000	78.86	131.35
Converging -0.41		1.14	-0.36	0.725	-2.83	2.02

Fatigue Condition Indicator

Regression Sta					RELIABILITY AND ANALYSIS LABS THE UNIVERSITY OF ALAS	
r 0.707						
r ²	0.500					
Std Err 11.64						
n 18						
ANOVA df		55	MS	F	P-value	
Regression 1		2166.36	2166.36	15.98	0.001	
Residual	16	2169.25	135.58			
Total 17		4335.61				
Coefficien	Std Err	t Stat	P-value	LCI 95%	UCI 95%	
Intercept 64.19		5.73	11.21	0.000	52.05	76.33
Fatigue	2.11	0.53	4.00	0.001	0.99	3.24

THE UNIVERSITY OF
ALABAMA IN HUNTSVILL

Step Condition Indicator

Regression .	Statistics					RELIABILITY AND F ANALYSIS LAB()F The UNIVERSITY OF ALABANA I
r	0.908					
r^2	0.825					
Std Err	8.869					
n	18					
ANOVA df		55	M5	F	P-value	
Regression	1	5943.88	5943.88	75.56	0.000	
Residual	16	1258.57	78.66			
Total	17	7202.44				
Coefficients		Std Err	t Stat	P-value	LCI 95%	UCI 95%
Intercept	61.28	4.36	14.05	0.000	52.04	70.53
Step 3.50		0.40	8.69	0.000	2.65	4.36

Time Directed Maintenance, TDM

- Consumed life characterized by time in service, but...
- Single failure mechanism with single failure mode
- > Failure mode correlated to operating time

Time-to-Failure Data

			_				
Data - TTF ₁				Descriptive Statistics		TTF ₁	<i>f</i> ₁ (<i>t</i>)
490	695	725		Mean	673.96	400	0
457	613	645		Standard Deviation	139.20	500	2
508	538	728		Kurtosis	0.910	600	7
595	538	663		Skewness	0.811	700	9
613	699	845				800	4
581	659	842				900	4
685	721	1064				1000	0
696	540	893				1100	1
552	815	797				$\Sigma f_1(t) =$	27

Time-to-Failure Histogram

Fit Data to 3-Parameter Weibull Median Ranks Regression

- > First: Fit the 2-Parameter Weibull
- Then: Select a value for the location parameter, γ
 - Choose the mid-time between 0 and $\mathsf{T}_{\mathsf{min}}$
 - Calculate $X_{\gamma} = X_i \gamma$
 - Calculate r^2 for $X_{\gamma} \& Y$
- If: r² for X_γ < r² for the 2-Parameter Weibull, use the 2-Parameter Weibull
- > If: r^2 for X_{γ} > r^2 for the 2-Parameter Weibull, fit the 3-Parameter Weibull

Fit Data to 2-Parameter Weibull Median Ranks Regression

- Gather raw data
- Rank order raw data from lowest to highest
- Assign index to rank ordered data
- Calculate X Ln(x)
- ≻ Calculate F(x) ⊷
- Calculate Y Ln[Ln(1/(1-F(x)))]
- Perform Median Ranks Regression
 - Excel Method 1
 - \circ Plot data scatter
 - \circ Insert "Trendline" with r-sq, R^2
 - Calculate Weibull parameters
 - Excel Method 2
 - $\circ\,$ Run Data Analysis Linear Regression
 - Calculate Weibull parameters
- Evaluate parameter estimators using R²
 - $R^2 \equiv coefficient of determination$
 - R² is a measure of data fit

 $0 \le R^2 \le 1$

 Bartlett's Median Ranks estimator for F(x)

$$\widehat{F}(x) = \frac{i - 0.3}{n + 0.4}$$

 Formulation of linear equation for Median Ranks Regression

$$y_0 = -\beta Ln(\eta)$$
$$b = \beta$$

$$Y = y_0 + bX$$

• Weibull parameter estimation

$$\beta = b$$

$$\eta = Ln^{-1}\left(\frac{y_0}{\beta}\right) = e^{-\left(\frac{y_0}{\beta}\right)}$$

	TTF ₁	i	F	X_1	У	
THE UNIVERSITY OF	457	1	0.026	6.125	-3.654	
ALABAMA IN HUNTSVILLE	490	2	0.062	6.194	-2.748	
	508	3	0.099	6.230	-2.266	
	538	4	0.135	6.288	-1.931	
	538	5	0.172	6.288	-1.670	
	540	6	0.208	6.292	-1.456	
	552	7	0.245	6.314	-1.272	
	581	8	0.281	6.365	-1.109	
	595	9	0.318	6.389	-0.962	
	613	10	0.354	6.418	-0.828	
	613	11	0.391	6.418	-0.703	
	645	12	0.427	6.469	-0.585	
	659	13	0.464	6.491	-0.474	
	663	14	0.500	6.497	-0.367	
	685	15	0.536	6.529	-0.263	
	695	16	0.573	6.544	-0.161	
	696	17	0.609	6.545	-0.062	
	699	18	0.646	6.550	0.038	
	721	19	0.682	6.581	0.137	
	725	20	0.719	6.586	0.238	
	728	21	0.755	6.590	0.342	
	797	22	0.792	6.681	0.451	
	815	23	0.828	6.703	0.567	
	842	24	0.865	6.736	0.694	
	845	25	0.901	6.739	0.840	
	893	26	0.938	6.795	1.022	
	1064	27	0.974	6.970	1.299	

2-P Weibull Median Ranks Regression

2-P Weibull Median Ranks Regression

					$MRR(X_1)$		
Regress	sion Stat	tistics			3		
r	0.961				1		
r ²	0.923				у _{6.00}	6.25	6.75 7.00
Adj r²	0.920				-1	A	y = 5.7119x - 37.642
Std Err	0.338				-3	R ² = 0.9228	
n	27						
ANOVA	df	55	MS	F	P-value		
Regression	1	34.02	34.02	298.67	0.000		
Residual	25	2.85	0.11				
Total	26	36.87					
Coeffici	ients	Std Err	t Stat	P-value	LCI 95%	UCI 95%	
у о	-37.64	2.15	-17.53	0.000	-42.06	-33.22	
β_1	5.71	0.33	17.28	0.000	5.03	6.39	
η_1	727.81						

	TTF ₁	i	F	X _{γ1}	У
THE UNIVERSITY OF	457	1	0.026	4.043	-3.654
ABAMA IN HUNTSVILLE	490	2	0.062	4.500	-2.748
	508	3	0.099	4.682	-2.266
	538	4	0.135	4.927	-1.931
	538	5	0.172	4.927	-1.670
	540	6	0.208	4.942	-1.456
	552	7	0.245	5.024	-1.272
	581	8	0.281	5.198	-1.109
	595	9	0.318	5.273	-0.962
	613	10	0.354	5.361	-0.828
	613	11	0.391	5.361	-0.703
	645	12	0.427	5.501	-0.585
	659	13	0.464	5.557	-0.474
	663	14	0.500	5.572	-0.367
	685	15	0.536	5.652	-0.263
	695	16	0.573	5.687	-0.161
	696	17	0.609	5.690	-0.062
	699	18	0.646	5.700	0.038
	721	19	0.682	5.771	0.137
	725	20	0.719	5.784	0.238
	728	21	0.755	5.793	0.342
	797	22	0.792	5.984	0.451
	815	23	0.828	6.028	0.567
	842	24	0.865	6.091	0.694
	845	25	0.901	6.098	0.840
	893	26	0.938	6.201	1.022
_	1064	27	0.974	6.498	1.299

TTF Location Parameter, γ

SRE RAMS 2013

ALABA

TTF Location Parameter, γ

3-P Weibull Failure Math Model - TTF

Regress	ion Stat								
r	0.994					9	95% LCL TTF		
r ²	0.989					Goal S		ieek:	
Adj r ²	0.988					T_{LC}	:L =	475.56	-hrs
Std Err	0.130					$F(T_{LCL})$) =	0.050	
n	27								
ANOVA	df	55	MS	F	P-1	P-value			
Regression	1	36.45	36.45	2172.77		0.000			
Residual	25	0.42	0.02						
Total	26	36.87							
Coeffici	ents	Std Err	t Stat	P-value	LCI	. 95%	UC	CI 95%	
Уo	-12.07	0.25	-48.60	0.00	-	-12.58		-11.55	
β_1	2.10	0.05	46.61	0.00		2.01		2.20	
η_1	310.4								
γ1	400								

3-P Weibull Failure Math Model

$$\begin{split} \mathbf{f}_{1}(t) &\coloneqq \begin{bmatrix} 0 & \text{if } 0 \le t < \gamma_{1} \\ \left(\frac{\beta_{1}}{\eta_{1}}\right) \cdot \left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1} - 1} - \left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1}} & \mathbf{h}_{1}(t) \coloneqq \left(\frac{\beta_{1}}{\eta_{1}}\right) \cdot \left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1} - 1} \\ F_{1}(t) &\coloneqq \begin{bmatrix} 0 & \text{if } 0 \le t < \gamma_{1} & \alpha \coloneqq 0.05 \\ - \left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1}} & t_{1LCL} \coloneqq 475.5 \\ 1 - e^{-\left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1}}} & \text{if } t \ge \gamma_{1} & F_{1}(t_{1LCL}) = 0.050 \\ S_{1}(t) &\coloneqq \begin{bmatrix} 1 & \text{if } 0 \le t < \gamma_{1} & 0 \\ - \left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1}} & 0_{1} \coloneqq \int_{0}^{\infty} S_{1}(t) dt \\ e^{-\left(\frac{t - \gamma_{1}}{\eta_{1}}\right)^{\beta_{1}}} & \text{if } t \ge \gamma_{1} & \theta_{1} = 674.917 \\ \end{split}$$

Failure Math Model pdf - f(t)

Risk Threshold								
	r =	0.00125						
Part 1	† _r =	467						
Part 2	† _r =	606						
Part 3	† _r =	989						

Exponential v Weibull Failure Math Models

Time-to-Repair Data

Da	ta - TT	R ₁	Descriptive Stati	istics	TTR ₁	<i>f</i> ₁ (<i>t</i>)	RE AN THE
132	108	95	Mean	106.75	0	0	
126	105	89	Standard Deviation	15.96	10	0	
97	87	128	Kurtosis	-0.838	20	0	
88	98	115	Skewness	0.476	30	0	
85	105	92			40	0	
114	96	98			50	0	
107	110	91			60	0	
106	116	129			70	0	
					80	0	
					90	4	
					100	7	
					110	6	
					120	3	
					130	3	
					140	1	
					$\Sigma f_1(t) =$	24	_

3-P Weibull Failure Math Model

$$\begin{split} \text{HUNTSVILLE} & f_{r1}(t) \coloneqq \begin{bmatrix} 0 & \text{if } 0 \le t < \gamma_1 \\ \left(\frac{\beta_1}{\eta_1}\right) \cdot \left(\frac{t - \gamma_1}{\eta_1}\right)^{\beta_1 - 1} & -\left(\frac{t - \gamma_1}{\eta_1}\right)^{\beta_1} \\ \text{if } t \ge \gamma_1 \\ \text{S}_{r1}(t) \coloneqq \begin{bmatrix} 1 & \text{if } 0 \le t < \gamma_1 \\ e & \left(\frac{t - \gamma_1}{\eta_1}\right)^{\beta_1} \\ e & \left(\frac{t - \gamma_1}{\eta_1}\right)^{\beta_1} \\ \text{if } t \ge \gamma_1 \\ \text{if } t \ge \gamma_1 \\ \text{F}_{r1}(t) \coloneqq \int_0^t f_{r1}(t) \, dt \\ \mu_1 \coloneqq \int_0^\infty S_{r1}(t) \, dt \\ \mu_1 = 1.756 \\ \end{split}$$

LDT Math Model - Baseline

nna Donain Logistics Downtime

RELIABILITY AND FAILURE DECADATION FAILURE DATACASISTS LABORATORY

pre-Repair Logistics Downtime								
	T _{min}	T_{mode}	T_{\max}	T _{avg}				
SME 1	2.50	2.75	2.75	2.67				
SME 2	2.88	3.50	3.25	3.21				
SME 3	5.13	5.00	5.25	5.13				
T _{avg}	3.50	3.75	3.75	3.667				

post-Repair Logistics Downtime							
	T _{min} T _{mode}		T _{max}	T _{avg}			
SME 1	0.50	0.75	1.00	0.75			
SME 2	1.00	1.25	1.13	1.13			
SME 3	1.50	1.25	1.75	1.50			
T _{avg}	1.00	1.08	1.29	1.125			

Reliability Simulation Inputs

Empirical Parameters										
Weibull Model Fit										
Failu	Failure Model									
β1	2.103									
η1	310.4	-hr								
γ1	400	-hr								
Repo	air Model									
β_1	1.398									
η_1	24.71	-min								
	0.412	-hr								
γ1	83	-min								
	1.38	-hr								

Log Downtime	T _{min}	T_{mode}	T_{\max}	T_{avg}	
pre-Repair LDT	2.67	3.20	5.13	3.67	
post-Repair LDT	0.75	1.13	1.50	1.13	
<u>95% UCL</u>		Σ	LDT =	4.79	
pre-Repair LDT				4.64	
post-Repair LDT				1.38	
		<i>Σ</i> LDT _{95%} =		6.02	
<u>Log Downtime</u>	T _{min}	T_{mode}	T _{max}	T_{avg}	
pre-Repair LDT	0.50	0.67	1.00	0.72	
post-Repair LDT	0.33	0.50	1.19	0.67	
<u>95% UCL</u>		<i>Σ</i> LDT =		1.40	
pre-Repair LDT				0.91	
post-Repair LDT				1.02	
		SLD.	T _{95%} =	1.92	

Baseline Maintenance Labor Inputs

Baseline	pre-Repai	r Logistics	Downtime	;			
Labor		Time-to-R	epair				
Allocation			post-Repo	air Logistics Downtime			
Master	1	1	0	/hr			
Journeyman	1	2	1	/hr			
Helper	2	2	1	/hr			
Labor Cost				/hr			
Master	\$115.76	\$115.76	\$0.00	/hr			
Journeyman	\$73.97	\$147.94	\$73.97	/hr			
Helper	\$82.15	\$82.15	\$41.08	/hr			
Sum	\$271.89	\$345.86	\$115.05	/hr			

PM Maintenance Labor Inputs

PM	pre-Repai	r Logistics	Downtime				
Labor		Time-to-R	Repair				
Allocation			post-Repo	uir Logistics Downtime			
Master	0	1	0	/hr			
Journeyman	0	2	1	/hr			
Helper	2	2	0	/hr			
Labor Cost				/hr			
Master	\$0.00	\$115.76	\$0.00	/hr			
Journeyman	\$0.00	\$147.94	\$73.97	/hr			
Helper	\$82.15	\$82.15	\$0.00	/hr			
Sum	\$82.15	\$345.86	\$73.97	/hr			

п

Maintenance Costs Inputs

				THE U	NIVERSITY OF ALABAMA IN H	UNTS						
Spo	are Po	arts E	xpens	es	EC	Q	Acq		Emergency		ency	
Part	Ν	tgr	Q	TAT	Со	st	C	Cost		Cost	ΤΑΤ	
Part 1	1	0	1	96	\$2,	575	\$2	2,575	\$	3,975	24	╞
Lost Opportunity					\$9,1	.25	/hr					
Fix			ed Costs			\$1,375 /Ev			nt			
		Inv C	arry (Costs		\$1.38 /hr		/hr				
	_		D	irect								
			Overhead Specialty Too			\$	r/ł	۱r				
		S			bl		\$4	4.01				
		F	acility	/		\$	140).22				
	•											

Part Life-Cycle Simulation Factors

Mission duration									
2 8-hr shifts per day									
for a 5-day week									
τ =	τ = 80 -hrs								
for:	50 wks/yr								
System Useful Life									
T _{Life} =	= 10 -yrs								
T _{LC} =	40000								

		Ln()
$R_{Allocation}$ =	0.9885	-0.0116
α =	0.05	-2.9957

$$n = 258.998 = ln(a)/ln(R_{Allocation})$$

Baseline Reliability Simulation Report

Simulation Repor	t for Part	1 Baselin					
Results from 259	runs of s	im time 4					
Part 1	Minimum	Mean	Maximum	St.Dev	95% CL	SEM	95% CL
Availability	0.98984	0.99051	0.99137	0.00030	0.99002	0.00002	0.99048
MTBF	628.51	683.68	734.35	19.74	651.09	1.23	681.65
MDT	6.32	6.54	6.80	0.08	6.68	0.005	6.55
MMT	1.67	1.76	1.88	0.03	1.81	0.002	1.76
LDT		4.79			4.86		4.79
System Failures	54	58.00	63	1.66		0.10	58.17

PM Reliability Simulation Report

Simulation Repor	t for Part	1 - PM					
Results from 259	runs of s	im time 4	0000-hrs				
Part 1	Minimum	Mean	Maximum	St.Dev	95% CL	SEM	95% CL
Availability	0.99305	0.99328	0.99342	0.00006	0.99318	0.000004	0.99328
MTBF	467.32	467.43	467.49	0.03	467.38	0.00	467.42
MDT	3.10	3.16	3.27	0.03	3.73	0.00	3.16
MMT	0.75	1.71	2.38	0.04	1.78	0.00	1.71
LDT	0.83	1.40	2.19		1.95		1.45
System Failures	85	85	85				

Reliability Simulation Summary

RAM Summary Information									
RAM	Detern	ninistic	Baseline S	Simulation	PM Simulation				
Parameter	Mean	95% CL	. Mean 95% CL		Mean	95% CL			
MTBF	675	476	684	651	467	467			
MTTR	1.76	2.28	1.76	1.81	1.71	1.78			
MLDT	4.79	6.02	4.79	4.86	1.40	1.95			
MDT	6.55	8.30	6.54	6.68	3.11	3.73			

Labor, Materials, Overhead & Lost Opportunity Costs Table

Cost Summary Information									
Cost	Determ	Deterministic Baseline Simu		Simulation	mulation PM Sim				
Parameter	Mean	95% CL	Mean	95% CL	Mean 95% CL				
C _{ICC}	-\$33.12	-\$33.12	-\$33.12	-\$33.12	-\$33.12	-\$33.12	/Day		
\mathcal{C}_{Part}	-\$2,575	-\$2,575	-\$2,575	-\$2,575	-\$2,575	-\$2,575	/Event		
\mathcal{C}_{Labor}	-\$1,733	-\$2,209	-\$1,733	-\$1,774	-\$865	-\$986	/Event		
preRepLDT	\$996	, \$1,261	\$996	\$1,018	\$197	\$251			
TTR	\$607	, \$789	\$608	\$628	\$591	\$616			
postRepLDT	\$129	\$159	\$129	\$128	\$77	\$119			
Срон	-\$253	-\$329	-\$253	-\$262	-\$247	-\$257	/Event		
\mathcal{C}_{Fixed}	-\$1,375	-\$1,375	-\$1,375	-\$1,375	-\$1,375	-\$1,375	/Event		
ΣC_{Event}	-\$5,936	-\$6,489	-\$5,936	-\$5,986	-\$5,062	-\$5,193	/Event		
CLostOp	-\$59,732	-\$75,756	-\$59,708	-\$60,916	-\$28,339	-\$34,082	/Event		
$\Sigma C_{Event+LostOp}$	-\$65,669	-\$82,244	-\$65,644	-\$66,902	-\$33,401	-\$39,274	/Event		

Economic Analysis Expensed Costs & Lost Opportunity Costs

Economic Analysis										
Economic	Detern	ninistic	Baseline S	Simulation	PM Simulation					
Parameters	Mean 95% CL		Mean	95% CL	Mean	95% CL				
$PV(C_{ICC})$	-\$928	-\$655	-\$940	-\$896	-\$644	-\$644				
$PV(C_{Event})$	-\$8,475	-\$9,035	-\$8,474	-\$8,525	-\$7,615	-\$7,745				
$NPV(\mathcal{C}_{ICC+Event})$	-\$9,403	-\$9,690	-\$9,414	-\$9,421	-\$8,259	-\$8,389				
$A(C_{ICC+Event})$	-\$335	-\$490	-\$332	-\$348	-\$425	-\$432				
$PV(C_{LostOp})$	-\$59,360	-\$75,423	-\$59,331	-\$60,549	-\$28,217	-\$33,934				
$NPV(C_{Exp+LostOp})$	-\$68,763	-\$85,113	-\$68,745	-\$69,970	-\$36,475	-\$42,323				
$A(C_{Exp+LostOp})$	-\$2,453	-\$4,306	-\$2,421	-\$2,587	-\$1,877	-\$2,178				

Part Uniform Recurring Equivalent Cost

Part Operational Availability

Stress-Directed Maintenance, SDM

- Consumed life characterized by applied stress profile
- > Measures failure mechanisms acting on part
- > Not well developed for use by practioner

Summary

- RCM yields definition of scheduled maintenance interval for critical parts
- RCM measures part consumed life constrined by a risk threshold
- > RCM metrics:
 - CBM Condition indicator
 - TDM Time in service
 - SDM Stress load profile

