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Reliability Engineering Overview 
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Reliability Engineering 

• Reliability Engineering as a Discipline:  

– The application of engineering and scientific principles to the 

design and processing of products, both hardware and software, 

for the purpose of meeting product reliability requirements or 

goals.  

• Reliability as a Figure of Merit is:  

– The probability that an item will perform its intended function 

for a specified mission profile.  

• Reliability is a very broad design-support discipline. It has 

important interfaces with most engineering disciplines 

• Reliability analysis is critical for understanding component failure 

mechanisms and identifying reliability critical design and process 

drivers.  
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Reliability Discussions and Clarifications 
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Probabilistic Risk Assessment (PRA) 

• Reliability:  The probability that an item will perform its intended function for a specified mission 

profile. 

• Risk: The chance of occurrence of an undesired event and the severity of the resulting consequences. 

• Probabilistic Risk assessment (PRA) is the systematic process of analyzing a system, a process, or an 

activity to answer three basic questions: 

– What can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired 

consequences of interest)?  

– How likely is it (probabilities)?  

– What is the severity of the degradation (consequences)? 

Scenario 
Likelihood 

(Probability) 
Consequence 

S1 

S2 

S3 
. 
. 
. 

SN 

p1 

p2 

p3 
. 
. 
. 

pN 

C1 

C2 

C3 
. 
. 
. 

CN 

R  RISK  { Si, Pi, Ci } 

Risk assessment is the task 

of generating the triplet set 

 8 



The PRA Process 
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The ET Foam Probabilistic Risk Assessment 
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Reliability Demonstration 

• Reliability Demonstration is the process of quantitatively estimating  the 

reliability of a system using objective data at the level intended for 

demonstration. 

• statistical  formulas  are used to calculate  the demonstrated reliability at 

some confidence level. 

• Models and techniques  used in reliability  demonstration include 

Binomial,  Exponential, Weibull models, etc..  

• Due to high cost and schedule impact of reliability demonstration, 

programs  employed  this method only to demonstrate a certain reliability 

comfort level. For example,  a reliability  goal of .99 at 95% confidence 

level is demonstrated by conducting 298 successful  tests. 
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Statistical Confidence 
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Reliability Predictions 

• Reliability prediction is the process of quantitatively estimating  the reliability of a 

system using both objective and subjective data. 

• Reliability prediction is performed  to the lowest level for which data is available. 

The sub-level reliabilities  are then combined  to derive the system level prediction. 

• Reliability prediction  techniques  are dependent  on the degree of the design 

definition  and the availability  of historical  data. Examples are: 

– Similarity analysis techniques: Reliability  of a new design is predicted  using 

reliability  of similar parts; where failure rates are adjusted for the operating 

environment, geometry, material change, etc. 

– Physics-based techniques: Reliability  is predicted  using probabilistic 

engineering models expressed as loads and environment vs. capability 

– Techniques that utilize generic failure rates such as MIL-HDBK 217, Reliability  

Prediction  of Electronic  Equipment. 
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Design VS. Process Reliability 
“Design it Right and Built it Right 
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Design Reliability 

Failure 
Region 
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• Causes and Contributing Factors  

• The zinc chromate putty frequently failed and permitted the gas to erode the 

primary O-rings. 

• The particular material used in the manufacture of the shuttle O-rings was the 

wrong material to use at low temperatures. 

• Elastomers become brittle at low temperatures. 

Design Reliability 

The Challenger Accident  
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Process Reliability 
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Assurance for Complex Electronics Process Reliability 
The Columbia Shuttle Accident 

• The ET thermal protection system is a foam-type material applied to the 

external tank to maintain cryogenic propellant quality, minimize ice and frost 

formation, and protect the structure from ascent, plume, and re-entry heating.  

• The TPS during re-entry is needed because after ET/Orbiter separation, 

premature structural overheating due to loss of TPS could result in a 

premature ET breakup with debris landing outside the predicted footprint.  
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Process Reliability Component Reliability System Risk 
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Concluding Remarks 

• Reliability engineering is a discipline while PRA is a process 

• Reliability deals with failure analysis focusing on understanding failure 

mechanisms that could lead to loss of function ; while PRA deals with 

system risk focusing on understanding the system risk scenarios that 

could lead to loss of mission or loss of crew. 

• Reliability prediction, which is based on objective and subjective data, is 

intended to  help the design process by identifying component, 

subsystem, and system reliability drivers; while demonstrated reliability, 

which is based on objective data, is intended to demonstrate certain 

comfort reliability level in support of reliability prediction. 

• Physics based design reliability and process reliability, which are 

performed on selected failure modes, are critical input to reliability 

prediction. 

• Both reliability prediction and reliability demonstration are critical data 

source for PRA.     
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