

Mission Success Starts with Safety

Reliability Engineering - Discussions and Clarifications

Reliability Engineering VS. Probabilistic Risk Assessment (PRA) Reliability Prediction VS. Reliability Demonstration Design Reliability VS. Process Reliability

Fayssal M. Safie, Ph. D.,

NASA R&M Tech Fellow Marshall Space Flight Center

SRE Meeting

March 11, 2014

• Reliability Engineering Overview

- Reliability Engineering Definitions
- The Reliability Engineering Case
- The Relationship to Safety, Mission Success, and Affordability

• Discussions and Clarifications

- Reliability VS. Probabilistic Risk Assessment (PRA)
- Reliability Prediction VS. Reliability Demonstration
- Design Reliability VS. Process Reliability
- Concluding Remarks

Reliability Engineering Overview

- Reliability Engineering as a Discipline:
 - The application of engineering and scientific principles to the design and processing of products, both hardware and software, for the purpose of meeting product reliability requirements or goals.
- Reliability as a Figure of Merit is:
 - The probability that an item will perform its intended function for a specified mission profile.
- Reliability is a very broad design-support discipline. It has important interfaces with most engineering disciplines
- Reliability analysis is critical for understanding component failure mechanisms and identifying reliability critical design and process drivers.

Reliability Program Management & Control			
Reliability Program PlanContractors and Suppliers Monitoring	Reliability Program Audits	Reliability Progress Reports	Failure Review Processes
Process Reliability	Reliability Requiremen	ts	Root Cause Analysis
Design Reliability Drivers	Reliability Requiremen Analysis	its	Worst Case Analysis
Process Characterization	Reliability Requiremen Allocation	ıts	Human Reliability Analysis
Process Parameter Design	Reliability Prediction		Stress Screening
Feedback Control	Reliability	< S	neak Circuit Analysis
Statistical Process Control	Case		Probabilistic Design Analysis
Process Monitoring	Reliability Testing		FMEA/CIL

The Relationship to Safety, Mission Success, and Affordability

Reliability Discussions and Clarifications

- Reliability: The probability that an item will perform its intended function for a specified mission profile.
- Risk: The chance of occurrence of an undesired event and the severity of the resulting consequences.
- **Probabilistic Risk assessment (PRA)** is the systematic process of analyzing a system, a process, or an activity to answer three basic questions:
 - What can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest)?
 - How likely is it (probabilities)?
 - What is the severity of the degradation (consequences)?

The PRA Process

The ET Foam Probabilistic Risk Assessment

- Reliability Demonstration is the process of quantitatively estimating the reliability of a system using objective data at the level intended for demonstration.
- statistical formulas are used to calculate the demonstrated reliability at some confidence level.
- Models and techniques used in reliability demonstration include Binomial, Exponential, Weibull models, etc..
- Due to high cost and schedule impact of reliability demonstration, programs employed this method only to demonstrate a certain reliability comfort level. For example, a reliability goal of .99 at 95% confidence level is demonstrated by conducting 298 successful tests.

Reliability Calculation through Demonstrated Tests By Using Binomial Statistical Formula

Number of Successful Tests Needed

- Reliability prediction is the process of quantitatively estimating the reliability of a system using both objective and subjective data.
- Reliability prediction is performed to the lowest level for which data is available. The sub-level reliabilities are then combined to derive the system level prediction.
- Reliability prediction techniques are dependent on the degree of the design definition and the availability of historical data. Examples are:
 - Similarity analysis techniques: Reliability of a new design is predicted using reliability of similar parts; where failure rates are adjusted for the operating environment, geometry, material change, etc.
 - Physics-based techniques: Reliability is predicted using probabilistic engineering models expressed as loads and environment vs. capability
 - Techniques that utilize generic failure rates such as MIL-HDBK 217, Reliability Prediction of Electronic Equipment.

Design Reliability

Design Reliability

The Challenger Accident

Causes and Contributing Factors

- The zinc chromate <u>putty frequently failed</u> and permitted the gas to erode the primary O-rings.
- The particular material used in the manufacture of the shuttle O-rings was the wrong material to use at low temperatures.
- Elastomers become brittle at low temperatures.

Process Reliability

The Columbia Shuttle Accident

- The ET thermal protection system is a foam-type material applied to the external tank to maintain cryogenic propellant quality, minimize ice and frost formation, and protect the structure from ascent, plume, and re-entry heating.
- The TPS during re-entry is needed because after ET/Orbiter separation, premature structural overheating due to loss of TPS could result in a premature ET breakup with debris landing outside the predicted footprint.

The Quality, Reliability, and Risk Relationship

- Reliability engineering is a discipline while PRA is a process
- Reliability deals with failure analysis focusing on understanding failure mechanisms that could lead to loss of function ; while PRA deals with system risk focusing on understanding the system risk scenarios that could lead to loss of mission or loss of crew.
- Reliability prediction, which is based on objective and subjective data, is intended to help the design process by identifying component, subsystem, and system reliability drivers; while demonstrated reliability, which is based on objective data, is intended to demonstrate certain comfort reliability level in support of reliability prediction.
- Physics based design reliability and process reliability, which are performed on selected failure modes, are critical input to reliability prediction.
- Both reliability prediction and reliability demonstration are critical data source for PRA.