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Dependability and Reliability 
Definitions
Dependability:

 the ability of a system to deliver the intended level of 
service to its users—Laprie (1985)

 those system properties that allow us to rely on a 
system functioning as required—Littlewood and 
Strigini (2000)

 Littlewood and Strigini (2000) say that dependability 
includes reliability, safety, security, and availability 
among other attributes



Dependability and Reliability 
Definitions
Reliability:

 the probability of failure-free software operation for a 
specified period of time in a specified environment—
Pan (1999)

 continuity of service—Laprie and Kanoun (1996)



Dependability
How to achieve dependability of software:

 Fault avoidance (process oriented)

 don’t introduce bugs (faults, defects) into the software 
in the first place

 Fault tolerance (product oriented)

 fulfil the system’s function even though faults occur

 accept that some faults will occur and hide the 
associated failures



Reliability
How to achieve reliability of software:

 Fault forecasting

 How to estimate the current and future quantities of 
faults and their consequences—Laprie and Kanoun
(1996)

 Fault removal

 How to reduce the number of faults and the seriousness 
of faults—Laprie and Kanoun (1996)



Software vs. Hardware Reliability
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Myers (1976)

 Software does not wear out

 Software reliability is due to design errors only, 
whereas hardware reliability is subject to design errors, 
manufacturing errors, and errors due to wear and tear

Littlewood and Strigini (2000)

 Software unreliability is always the result of design 
faults which arise from human intellectual failures

 Hardware unreliability has often resulted from the 
“perversity of nature”



Software vs. Hardware Reliability
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Figure taken from Pressman and Maxim (2015)



Software vs. Hardware Reliability
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Software vs. Hardware Reliability
D.L. Parnas (1985) discusses the reasons for why software is more 
unreliable than hardware:

“Software systems are discrete state systems that do not have the 
repetitive structure shown in computer circuitry.  There is seldom a 
reason to construct software as highly repetitive structures. The 
number of states in software systems is orders of magnitude larger 
than the number of states in the non-repetitive parts of computers. 
The mathematical functions that describe the behavior of these 
systems are not continuous functions and traditional engineering 
mathematics does not help in their verification.  This difference 
clearly contributes to the relative unreliability of computer systems  
and the apparent lack of competence of software engineers. It is a 
fundamental difference that will not disappear with improved 
technology.”
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Software and Hardware Reliability 
Taken Together
However, one must be cautious treating hardware and 
software reliability as independent –Bendell and Mellor 
(1986):

 Faults may result from interactions between hardware 
and software

 Since the way that hardware reliability (of a repairable 
system) varies over time is different from the way that 
software varies over time, combining the two can be 
difficult mathematically



Why Software Reliability Becomes 
More Difficult Over Time
Littlewood and Strigini (2000) discuss various reasons 
why software reliability tends to become more difficult 
over time:

 The problems being addressed by the software have 
become more difficult and more novel
 In the early days of computing, software was used to 

automate existing successful manual solutions
 but today problems that were never previously solved are 

being addressed with software

 Since software is not subject to typical hardware 
constraints, it is possible to address problems that were 
too complex to address using hardware alone



Why Software Reliability Becomes 
More Difficult Over Time
 Software solutions have necessarily become more 

complex to address the more complicated problems

 There is a business need for short time periods to 
address these solutions

 With software, unlike with hardware, it is usually 
impossible to assume that since the software worked 
well in one context, it will also perform acceptably in a 
similar (but different) context



Software Reliability End of Life
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Figure taken from Pressman and Maxim (2015)
Figure taken from Cohen (2013)



Cohen (2015)

 Most software systems follow the bathtub curve

 Some software systems move straight from Initial 
Phase to Terminal Phase

 Due to poor architecture

 Poor understanding of requirements

 Inadequate understanding of business objectives
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Software Reliability End of Life



Cohen (2015)

 Adding new bugs especially occurs when changes are made 
to add additional features to the code

 Once a software system enters the Terminal Phase, the 
system owners enter crisis mode
 This makes it difficult to focus effort and energy on how to 

strategically replace the software

 The focus is on tactical fixes to postpone catastrophic failure 
in the short time
 However, these typically increase complexity

 This increase in complexity contributes to an increase in failure rate 
in the medium term
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Cohen (2015) makes the case that a replacement phase should 
be introduced proactively prior to entering the Terminal 
Phase
 The Operational Lifetime of the software system is limited.  
 Everyone knows this but for some reason will not admit it
 He says:

”The fact that in most instances this acknowledgement is not 
accompanied by some obsolescence planning strikes a 
dissonant chord.  It seems that some in the enterprise expect or 
hope that the software system will have an infinite Operational 
Lifetime—or at the very least, they hope that they will have 
moved on long before their successors need to deal with the 
engineering and commercial challenges of the Terminal Phase.”
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Software Reliability End of Life



Bendell and Mellor (1986):

 Systems analysis—get the requirements right, develop 
the right product

 Good management practice

 Team structure

 Good well documented software process

 Design and code inspections

 Method for fault and failure reporting

 Change control
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How To Achieve Software Reliability



 Good  software engineering

 Good design techniques

 Pay attention to the human element

 Formal methods (where appropriate and possible)

 Correctness proofs can be used only on simple 
algorithms

 Fault tolerant design

 Well designed testing
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How To Achieve Software Reliability



Reliability Models
Bendell and Mellor (1986) :

 Be quite clear about the distinction between reliability 
and other measures

 Carry out a representative product trial, keeping 
adequate records of failure and running time

 Do not rely on one single model but compare the 
results of several, on the basis of their predictive 
accuracy



Reliability Models
 Bendell and Mellor (1986) quote Littlewood (from a 

seminar):

1. Remember that many models perform badly most of 
the time

2. Some models seem to perform quite well some of the 
time

3. If you are sold a model as the universal answer to all 
your problems, be suspicious

4. Put not your trust in optimistic modelers. If the 
advocate of a model will tell you openly its 
drawbacks as well as its strengths, cherish him



Reliability Models
Dale and Harris (1982) discussed why software reliability 
models fail:

“…in many instances software reliability estimates, based 
on failure data, have proved to be unacceptably accurate. 
The reasons for this degree of inaccuracy are not yet fully 
understood but probably include the following:

1. Poor or inappropriate modeling assumptions;

2. Insufficient or poor quality data;

3. Undesirable statistical properties of parameter 
estimates”



Reliability Models
Harris in Bendell and Mellor (1986) discussed why 
statistical reliability growth models worked poorly:

“…the major flaw in this approach is its failure to observe 
scientific method, particularly the aspect that requires one 
to show that the premises upon which models are built 
have some basis in fact which can be shown to be 
plausible, either by analogy or by empirical or rational 
justification.”



Reliability Models
Characteristics of (traditional) software reliability 
models:

 Discuss probability of failure over a certain execution 
exposure

 Execution time

 Calendar time 

 sometimes execution time is later converted to calendar time

 Number of test cases

 Number of transactions



Reliability Models
Characteristics of (traditional) software reliability 
models (continued from previous page):

 Failures are characterized by studying numbers and 
times of previous failure occurrences

 Failures are assumed to be independent of each other

 A failure occurrence is expressed as a random variable

 Failures are unpredictable because the incidence of bugs 
(faults) is largely unpredictable

 Conditions under which a program is executed (for 
example, input variables) are largely unpredictable



Reliability Models
Dr.  Maureen Raley, my former Ph.D. student, spoke to 
Dr. Littlewood in England in 1997. She says that Dr. 
Littlewood told her:

“Using software reliability models was like looking out the 
back window to see where you are going.”



Reliability Models
Software Reliability Growth Model types:

Concave Model S-shaped Model



Reliability Models
Software Reliability Growth Model overall assumptions:

 Measuring residual defects (number of defects 
remaining in the software) 

 Helps know how much more testing is required

 Helps know whether code is ready to ship

 The number of defects detected per unit time 
decreases as defects are detected and repaired 
(assuming some kind of testing is going on) 



Reliability Models
Brockhurst and Littlewood (1996) examined the 
accuracy of 8 different software reliability models, in 
terms of short term prediction:

 they found 6 of these models were grossly optimistic 
in their predictions while 2 were grossly pessimistic



Reliability Models
In longer term reliability prediction, examining 2 of 
these models, Brockhurst and Littlewood found:

 even when a model can do one kind of prediction on a 
particular data source, different types of predictions 
don’t work even on the same data source

 the accuracy of the models differed on different data 
sources



Reliability Models
Brockhurst and Littlewood’s suggested solution was:

 to evaluate a model’s past predictions to actual 
observations

 over time build up a sequence of prediction/observations 
comparisons on a particular set of data

 then compare multiple models over the same set of data
and choose which model is more accurate in that way

 then use the differences between predictions and actual 
observations to recalibrate future predictions over the data 
set



Reliability Models
Subburaj (2015) discusses two classifications 
of software reliability models:

predictive

 estimator



Reliability Models
Subburaj (2015) describes predictive models 
as models that are designed to predict failure 
intensity prior to system test

 these models are not very accurate because 
the input data to the models is not very 
accurate



Reliability Models
According to Subburaj (2015), estimator 
models use data from the early part of a 
software project to predict the future

 since the data from the same software 
project is being used, the estimator models 
tend to be more accurate than the predictive 
models (since the predictive models are 
based on more generic input data)



Reliability Models
Taxonomy of defects from Subbaraj (2015):

Defect Level Example

Mild Symptoms of the defects offend us aesthetically.  For instance, a 
misspelled output or a badly aligned printout.

Annoying Names are truncated

Disturbing Refuses to handle legitimate transactions. Credit card not 
accepted.

Serious Loses track of transactions. Credit made by the customer is lost in 
the bank records.

Very Serious Not only the credit is lost, but a debit equal to cheque deposited is 
made.

Extreme Such blunders occur frequently.

Intolerable Long-term irrevocable corruption of database.

Catastrophic System fails abruptly.

Infectious System corrupts other systems even though it does not fail by 
itself.



Reliability Models
Ullah, Morisio, and Vetro (2015) provided a 
methodology to select the best reliability model to 
predict residual defects in Open Source Softwre:

Step 1. Collect defect data

Step 2. Extract defects

Step 3. Apply models to data

Step 4. Test against fit and prediction thresholds

Step 5. Test against prediction stability threshold

Step 6. Select the best model

Step 7. Compute Residual Defects



Reliability Models
Ullah, Morisio, and Vetro (2015) 

Step 1. Collect defect data

Since looking at open source data, collect 
defect data from online repositories



Reliability Models
Ullah, Morisio, and Vetro (2015) 
Step 2. Extract defects
1. Want only bugs that are closed or resolved, so filter 

out:
 Unresolved bugs
 Enhancements
 Feature requests
 Tasks
 Patches

2. Group data for entire release interval T into 
cumulative defects by week



Reliability Models
Ullah, Morisio, and Vetro (2015) 

Step 3. Apply models to data

Select data from a time period ending at ¾ 
of T to use in model fitting

Use nonlinear regression to fit model to this 
data

 If the model can describe the data, then:

 Evaluate the model’s goodness of fit based on R2



Reliability Models
Ullah, Morisio, and Vetro (2015) 

Step 4. Test against fit and prediction thresholds

 Compare goodness of fit of fitted models to a 
(subjectively chosen) R2 threshold

 They used 0.95 based on previous work by Stringfellow
and Andrews (2002)

 Check fitted models’ predictions against actual number 
of defects found

 Reject any models that predict fewer defects than the 
actual number of defects



Reliability Models
Ullah, Morisio, and Vetro (2015) 
Step 5. Test against prediction stability threshold
 A model’s prediction is stable if the prediction for week j 

is +/- 10% of the prediction for week j-1
 10% threshold chosen based on work by Zeephongsekul, 

Xia, and Kumar (1994)

 Check model stability for the defect data from time 
period 3/4T to T
 i=1
 Repeat until week ending in T

 Check stability of cumulative defects from 3/4T+i weeks
 i=i+1



Reliability Models
Ullah, Morisio, and Vetro (2015) 

Step 6. Select the best model

Choose the model that has:

 Passed all threshold tests

 Shows the highest number of predicted defects
 This results in worst case cost estimates

 If models widely disagree, consider using 
additional assessment techniques before 
choosing a model



Reliability Models
Ullah, Morisio, and Vetro (2015)

Step 7. Compute Residual Defects

Choose whether or not to use an open source 
software package based on the chosen model



Reliability Models
Ullah, Morisio, and Vetro (2015) applied their 
technique to the following open source projects:
 Apache
 Gnome
 C++ Standard library
 JUDDI
 HTTP Server
 XML Beans
 Enterprise Social Messaging Environment (ESME)



Reliability Models
Ullah, Morisio, and Vetro (2015) Examined the following models:

Model Type Date Mean Value Function

Musa-Okumoto Concave 1984

Inflection  S-
shaped

S-shaped 1984

Goel-Okumoto Concave 1979

Delayed S-shaped S-shaped 1984

Generalized Goel Concave 1985

Gompertz S-shaped Original 
(1832)

Logistic S-shaped 1991

Yamada 
Exponential

Concave 1986



Reliability Models
They measured which models would have done the best over the data:

Prediction relative error =
(predicted defects-actual defects)/    
predicted defects

Where:
 predicted defects is number of defects a model predicted at 2/3 of the time 

interval
 actual defects is defects at the end of the time interval

The model with the lowest prediction relative error is the best model for that 
release



Reliability Models

Project Release Using Prediction Relative Error Using Ullah et al. 
method

Gnome V2.0 Delayed S-shaped Delayed S-shaped

V2.2 Goel-Okumoto, Yamada 
Exponential

Goel-Okumoto

V2.4 Inflection S-shaped, Gompertz Inflection S-shaped

Apache 2.0.35 Delayed S-shaped, Logistic Gompertz

2.0.36 Delayed S-shaped, Logistic, 
Gompertz, Generalized Goel

Generalized Goel

2.0.39 Inflection S-shaped, Goel-
Okumoto, Generalized Goel

Goel-Okumoto

C++  Std Lib 4.1.3 Musa-Okumoto Inflection S-shaped

4.2.3 Musa-Okumoto Gompertz

5.0.0 Inflection S-shaped, Yamada 
Exponential, Generalized Goel

Yamada exponential

Partial Ullah, Morisio, and Vetro (2015) results:



Reliability Models
Ullah, Morisio, and Vetro (2015) overall results:

• For 17 of 21 releases, their method chose the same 
model as was chosen by prediction relative error

• For the other 4 releases, their method chose the 
second best model according to prediction relative 
error

• Their method threw out the best models in these 4 
cases because of a negative prediction relative error



Agile Software Development 
Processes
Agile Manifesto, from the Agile Alliance (2016):

We are uncovering better ways of developing software by doing it and helping 
others do it. Through this work we have come to value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on 
the left more.

© 2001, the Agile Manifesto authors
This declaration may be freely copied in any form, but only in its entirety 
through this notice.



Agile Software Development 
Processes
Agile Principles

1   Our highest priority is to satisfy the customer through early and 
continuous delivery of valuable software.
2  Welcome changing requirements, even late in development. Agile 
processes harness change for the customer's competitive advantage.
3  Deliver working software frequently, from a couple of weeks to a couple 
of months, with a preference to the shorter timescale.
4  Business people and developers must work together daily throughout 
the project.
5  Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the job done.
6  The most efficient and effective method of conveying information to 
and within a development team is face-to-face conversation.



Agile Software Development 
Processes
Agile Principles

7  Working software is the primary measure of progress.
8  Agile processes promote sustainable development. The sponsors, 
developers, and users should be able to maintain a constant pace 
indefinitely.
9  Continuous attention to technical excellence and good design enhances 
agility.
10  Simplicity--the art of maximizing the amount of work not done--is 
essential.
11  The best architectures, requirements, and designs emerge from self-
organizing teams.
12  At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly.



Reliability with Agile Software 
Processes
Far (2007) says:

“In [the] software industry there is a common 
assumption that deployment of software reliability 
engineering (SRE) contributes to huge overhead in 
development and its practice does not match agile 
software development which puts emphasis on 
traveling light and generating a minimum amount of 
project artifacts.”



Reliability with Agile Software 
Processes
Far (2007) specifies the Software Reliability 
Engineering process as consisting of the following 
steps:
1. Define necessary reliability
2. Develop an operational profile
3. Prepare for testing
4. Execute tests
5. Apply test data to guide decisions related to whether 

or not the developed software is ready for release



Reliability with Agile Software 
Processes
Far (2007) then discusses how these software reliability 
engineering process steps can be achieved during agile software 
development:
• Same as in non-agile process, define necessary reliability in 

terms of failure intensity. This includes:
• Define failure intensity objectives:

• Find acquired hardware and software failure intensities
• Determine developed product failure intensity objectives



Reliability with Agile Software 
Processes
Far (2007) further discusses balance between fault prevention, fault removal, and 
fault tolerance:

• In non-agile development:
• fault prevention is accomplished through requirements engineering, 

stakeholder involvement, and following standards
• Fault removal is accomplished through code reviews and testing after 

code has been written
• In agile development:

• In test driven development, unit tests and acceptance tests are written 
prior to writing the code.  So testing is a fault prevention technique
• With continuous integration combined with test driven development, 

regression testing is performed automatically
• When pair programming is used, code reviews become a fault 

prevention technique
• Since the process is test driven, the system will continuously be in a 

stable, testable, verifiable state
• So the failure intensity value will continually be held below the failure 

intensity objective 



Reliability with Agile Software 
Processes
Far (2007) discusses the use of an operational profile in agile 
software development:
 determining usage data based on user story is often not 

prescribed by agile software development processes
 however, the general idea of operational development fits well 

into agile development, since it goes along with the idea of 
develop the most critical functionality first

 Far suggests developing an operational profile as 
recommended by Musa



Operational Profiles
Musa (1993) developed operational profiles in five steps:
1. Find customer profile

 Person or group acquiring the system
2. Find user profile

 Person or group using the system
3. Find system-mode profile

 Group operations into execution related activities called system modes. 
Determine their occurrence probablities.

4. Find functional profile
 Create  a function list for each system mode. Construct a work flow profile 

showing the overall process being implemented. This will provide a 
quantitative view of how and how often different functions are used.

5. Find operational profile itself
 Develop the operational architecture, the way the user will perform 

operations to accomplish functions
 Divide execution into runs—end to end user activities
 Identify input space—the set of input states that can occur during 

operation (based on number of input variables) and occurrence 
probabilities

 Partition input space into operations—sample across the different input 
states/runs



Reliability with Agile Software 
Processes
Boerman et al. (2015) examine a model to report software 
status to  stakeholders outside the agile development activity.
This is based on the Goal Question Metric approach and 
resulted in the table on the following slide. 
Some definitions:
 Enhancement rate—percentage of project size of previous 

sprint that has gone into acceptance or production in 
current sprint

 Scope prognosis—combines project size with enhancement 
rate to give project owner an idea of the level of functional 
completeness, and compared to desired project end date

 Estimation shift—looks at changes between sprints in 
person hours to complete a story point



Reliability with Agile Software Processes
Goal Question Metric

1. Achieve the functional 
compliance of the software system 
from the viewpoint of the project 
owner/sponsor

1.a. To what extent are the 
functional requirements being 
implemented?

Enhancement Rate

Scope Prognosis

Project Size Remaining

1.b. How much scope churn is 
there?

Changed product backlog items 
(PBIs)

Added PBIs

Rejected PBIs

Project Size

2. Fulfill the expected schedule of 
the SD activity from the viewpoint 
of the project owner/sponsor?

2.a. When is the delivery of the 
software system expected?

Enhancement Rate

Time Prognosis

Project Size remaining

3. Optimize value for money of the 
SD activity from the viewpoint of 
the project owner/sponsor

3.a. What is the quality of the 
development process?

Enhancement Rate

Estimation Shift

Priority Shift

PBIs at risk

3.b. What is the quality of the 
product?

Software Quality –quality 
measurement based on ISO/IEC 
25010—requires effort beyond 
typical agile artifacts

3.c. What is the financial status of 
the project?

Expenses Prognosis—requires 
effort beyond typical agile artifacts

4. Minimize the risk of wasting SD 
effort (from the viewpoint of the 
project owner/sponsor)

4.a. What is the amount of effort at 
risk?

Effort at Risk



Reliability with Agile Software 
Processes
Kiwan, Morgan,a nd Benedicenti
(2013) suggest the following metrics to 
examine critical factors in an Extreme 
Programming (XP) software process, 
these are shown in the table on the 
following slide.



Reliability with Agile Software 
Processes

Metric Description Purpose

Lines of code/hour Measures actual production rate

Number of users stories per 
release

Allows comparison of work rates at different 
time periods

Percentage of practicing pair 
programmers

Improves software quality

Number of post release defects Measures software quality

Percentage of customer
involvement based on face to 
face meetings vs. remote 
meetings, time zones of 
customers

Affects software development cycle



Some Recent Reliability Models
Fiondella and Gokhale (2011) present a model with a bathtub shaped fault 
detection rate (fault detection rate varies over time according to the bathtub 
curve, increases toward the end of testing). 

Over the Ohba failure count data set, using predictive mean square error and 
Akaike Information Criteria, it outperforms the following models:
 Inflexion S-shaped model (same as earlier slide)

 Mostly constant fault detection rate—some increase in later stage testing 
based on one parameter

 Goel-Okumoto model (same as earlier slide)
 Constant fault detection rate
 Overestimates faults because assumes in later phases that testing based 

on techniques used, and ignores that code comprehension in later stages 
accounts for a decrease in the remaining number of faults

 Burn-in model—m(t) = α (1-exp(-λγtγ ) 
 simplifies to Goel-Okumoto when λ=β and γ=1)
 Varying fault detection rate—increasing over time
 Overestimates faults because assumes in later phases that testing based 

on techniques used, and ignores that code comprehension in later stages 
accounts for a decrease in the remaining number of faults



Some Recent Reliability Models
Predictive Mean Square Error 
 the sum of the squared differences between 

the cumulative number of faults observed and 
the cumulative number of faults predicted for 
the last k observations

Akaike Information Criteria
 Two times the number of parameters of the 

model minus the log-likelihood 



Some Recent Reliability Models
Park et al. (2012) proposed a software reliability model for 
embedded systems that takes hardware-related software 
failures into account.

They defined hardware related software failures as those 
caused by faulty hardware or hardware configuration 
changes.

They developed two new models:
 Random model—assumes that hardware related 

software failures occur randomly at a constant rate
 Weibull-based model—assumes that hardware related 

software failures occur based on a Weibull distribution



Some Recent Reliability Models
Over historical failure data of a combat system 
developed by a contractor (at CMMI level 5) with 
the Korea Ministry of National Defense, 
using Mean Magnitude of Relative Error and Mean 
Square Error,  
Park et al. (2012) compared their models to:
 Goel-Okumoto model
 Delayed S-shape Model

Their Weibull-based model was better than either Goel-
Okumoto or Delayed S-shape
Their Random model was better  than Delayed S-shape but 
slightly worse than Goel-Okumoto



Software Quality and Software 
Defect Prediction 

Predicting defects (bugs) based on analysis of source code is usually considered to 
be more software quality related than software reliability related

Much work in this area has involved various kinds of complexity metrics.  Two 
well known examples traditionally used in functionally oriented software are:

McCabe’s cyclomatic complexity metric, McCabe (1976):
 A count of the number of decision points in code

Halstead’s Software Science, Halstead (1977):
 Measures program vocabulary, length, volume, difficulty and effort 

based on number of distinct operators, number of distinct operands, 
total number of operators, and total number of operands in a 
program



Software Quality and Software 
Defect Prediction 
 Object-oriented software consists of classes and objects

 Classes are user-defined data types
 An object is an instance of a class
 A class/object contains data and functions

 Data is called attributes or member variables
 Functions are called methods, operations, or member 

functions
 Inheritance occurs when one class is an extension of an 

existing class (known as a parent-child relationship)
 Methods from a base class can be overridden in child classes
 Methods can be overloaded—methods with the same names 

could do somewhat different (though similar) tasks…these 
methods are differentiated by which parameters are passed to 
the method



Software Quality and Software 
Defect Prediction 
To measure object-oriented software, several suites 
of metrics have been defined, these include:
 Chidamber and Kemerer
 Lorenz and Kidd
 Abreu
 Bansiya and Davis
 Etzkorn and Delugach
 Li
 Stein, Etzkorn, Gholston, Farrington, Utley, Cox, 

and Fortune
 Poshyvanyk and Marcus



Software Quality and Software 
Defect Prediction 
The Chidamber and Kemerer Metrics Suite (1991, 1994) consists of the
following metrics:

 Depth of Inheritance Tree (DIT)
 Distance from the Base Class to the bottommost children in an 

inheritance tree
 Number of Children (NOC)

 Number of classes that inherit from the current class
 Response for a Class (RFC)

 All local methods plus all methods called by local methods
 Lack of Cohesion of Methods (LCOM)

 The cohesion of a class is characterized by how closely the local 
methods are related to the local instance variables

 Weighted Methods per Class (WMC)
 Sum of the complexities of all local methods

 Coupling Between Objects
 A count of the non-inheritance-related couples with other classes.  



Software Quality and Software 
Defect Prediction 

Lorenz and Kidd suite:

Method metrics:
 Number of message sends
 Lines of Code, Number of statements

Class metrics:
 Number of public instance methods
 Number of instance methods
 Number of instance variables
 DIT
 Number of abstract classes
 Avg number of parameters per method
 Avg number of comment lines/method
Etc.



Software Quality and Software 
Defect Prediction 
Brito e Abreu (MOOD metrics)(1995):

 Method Hiding Factor 1995 and 1996
– Proportion of methods that are hidden (private or protected)

 Attribute Hiding Factor 1995 and 1996
 Proportion of attributes that are hidden (private or protected)

 Method Inheritance Factor 
 Proportion of Methods that are inherited

 Attribute Inheritance Factor
 Proportion of Attributes that are inherited

 Polymorphism Factor 1994 and 1995
 Proportion of all possible polymorphic situations that are actually 

polymorphic
 Density of Client/Server relationships between classes
 Etc.

The MOOD metrics specify both per-system metrics as well as per-class 
metrics



Software Quality and Software 
Defect Prediction 
Bansiya and Davis (QMOOD) suite:

 Total number of ancestors
 Proportion of methods accessible from other classes
 Proportion of data which is inaccessible from other classes
 Number of classes directly related to current class
 Number of classes related to current class by attribute definitions alone
 Cohesion between methods of a class, based on parameter type definitions
 Extent of the part-whole relationship
 Number of new or inherited polymorphic methods
 Proportion of methods available to the class that are inherited
 Etc.

The QMOOD metrics include both class level and system level metrics



Software Quality and Software 
Defect Prediction 
Li and Henry suite (1993) (1993):

 Message Passing Coupling
 Data Abstraction Coupling

 Number of abstract data types employed
 Number of Methods
 Number of semicolons
 Number of attributes+number of operations



Software Quality and Software 
Defect Prediction 

Semantic Metrics Suites:
Etzkorn and Delugach (2001);
Stein, Etzkorn, Gholston, Farrington, Utley, Cox, and Fortune (2004, 2009): 

 Semantic metrics note that syntactic metrics are indirect and often arguable
 Instead, semantic metrics employ a program understanding engine to 

automatically understand the software, then measure the knowledge-base
 Includes metrics for cohesion, complexity, coupling, among others

 Example metrics:
 LORM, LORM1, LORM2, LORM3

 Look at the overlap of conceptual graphs representing the class to indicate 
cohesion

 CDC (Class Domain Complexity)
 Examines the complexity of the conceptual graphs that represent the class

 SCDE (Semantic Class Definition Entropy)
 Examines the frequency with which domain related concepts occur in the 

class



Software Quality and Software 
Defect Prediction 
Poshyvanyk and Marcus Conceptual 
Coupling (2009) and Conceptual Cohesion 
Metrics (2009)

These are based on semantic information from source code, 
calculated with information retrieval techniques (latent 
semantic analysis)

Example metrics:

Conceptual Similarity between methods of a class—the 
cosine between the vectors corresponding to methods as they 
appear within the semantic space constructed by LSI

Conceptual similarity between two classes—the average of 
the similarity methods between all unordered pairs of 
methods of two classes



Software Quality and Software 
Defect Prediction 

Olague, Etzkorn, Gholston, and Quattlebaum (2007) examined defect prediction 
of object-oriented classes developed using highly iterative/agile methods:
 metrics suites examined:

 Chidamber and Kemerer (CK) metrics
 Brito e Abreu MOOD metrics
 Bansiya QMOOD metrics

 Analyzed Rhino, a Java implementation of JavaScript
 Used multivariate binary logistic regression

 does not assume linearity of relationship between independent 
and dependent variables

 Does not assume variance around the regression line is the same 
for all values of the predictor  value

 Conclusions:
 MOOD metrics were not good defect predictors
 The CK metrics suites produced the best 3 models for defect 

prediction, followed by one QMOOD model
 CK and QMOOD metrics were highly correlated



Software Quality and Software 
Defect Prediction 

Menzies, et al. (2013) examined whether defect prediction and 
effort estimation is best done on a local basis or a global basis:
 Used data from the PROMISE data set::

 For defects: 7 software packages
 For effort: two systems, one with 499 projects, one 

with 156 projects
 Metrics examined were subsets of Chidamber and 

Kemerer, QMOOD, MOOD, variations of McCabe 
metrics

 Used clustering algorithms/rule learners
 Conclusions:

 Lessons learned from clustering (combining small 
parts of different data sources) were superior to global 
generalizations (over all data) or local lessons learned 
(from particular projects)

 Clusters from other sources nearest to the test data 
give the best lessons learned



Software Quality and Software 
Defect Prediction 

Shatnawi (2013) examined defect prediction for open source systems using the Chidamber
and Kemerer metrics:

 Used data from the PROMISE repository over 3 or 4 releases of 4 different open 
source projects (ant, camel, jedit, xerces)

 Examined Chidamber and Kemerer metrics only

 Used 7 machine learning classifiers: bayesian networks, support vector machines, 
neural networks, k nearest neighbors, decision trees: (C4.5)(CART) and random 
forest

 Examined binary variables (fault/no fault) and 4 category dependent variables 
(none, low, medium, high):

 None—class does not have faults in current release or previous release

 Low—some faults were fixed for a class in the previous release but no faults 
are fixed in the current release

 Medium—no faults in the previous release, but there are faults in the current 
release

 High—Faults in both previous and current release

 Conclusions:

 All classifiers did a better job of defect prediction for later releases

 Classifier results for ant and jedit were good, for camel and xerces were not 
good



Automated Bug Localization
Automated bug localization refers to techniques that automatically map bug 
reports to the sections in code where the bugs reside.

Many modern techniques are based on information retrieval such as Latent 
Semantic Indexing (LSI) or Latent Dirichlet Allocation (LDA).

 The comments and identifiers in class definitions in the code represent a text 
document

 The bug report represents another text document

LDA is a probabilistic topic model. 

 It models each topic as a probability distribution over the set of terms that 
make up the vocabulary of the document collection

 Each document is a finite mixture over the set of topics

Similarity measures between documents are computed as the conditional 
probability of the query given the document

 A document is relative to a query if it has a high probability of generating the 
words in the query



Automated Bug Localization
Lukins, Kraft, and Etzkorn (2010) compared LDA to LSI to 
map bug reports to code classes:

 Compared LSI to LDA in Mozilla and Eclipse over 8 bugs 
analyzed in a previous study

 For LSI, only 3 out of 8 bugs resulted in the first relevant 
method ranked in the top 10 results returned

 For LDA, all eight bugs resulted in the first relevant method 
ranked in the top 10 results returned

 Performed a study to analyze how LDA worked on large 
software systems with many bugs

 Analyzed 322 bugs across 25 versions of two software 
systems:  Rhino and Eclipse

 Study was much larger than prior LSI-only studies

 Study showed LDA can scale to work with large systems



Automated Bug Localization
Sisman, Akbar, and Kak (2016) examined automatic bug 
localization that employed structural information in 
addition to the bag of words concept used by LSI and LDA:

 Used Markov Random Field-based retrieval

 This can be used to take into account proximity of terms and 
ordering relationships between terms

 Examined 4000 bugs in AspectJ, Eclipse v3.1, Chrome v. 
4.0
 Used BUGLinks (Eclipse, Chrome) and iBugs (AspectJ) datasets

 Conclusions:

 Markov Random Field-based modeling is far superior to bag-of-
words approaches



Recommendations for a Metrics 
Program
 It’s important to have a baseline measurement

 Even if there aren’t good thresholds for some metrics, 
you can at least examine changes.

 Over time, you should be able to collect the mean values 

of metrics …anything which varies considerably from 

the mean should be examined

 There’s no point in collecting data unless you use it!

 As much metrics collection as possible should be 
automated

 DON’T use metrics on software as a performance metric for 
programmers! 

 Grady, R., and Caswell, D., Software Metrics, 

Establishing a Company-Wide Program, Prentice-Hall, 
1987.
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