
Letha Etzkorn, Ph.D., P.E.

Computer Science Department

University of Alabama in Huntsville

Dependability and Reliability
Definitions
Dependability:

 the ability of a system to deliver the intended level of
service to its users—Laprie (1985)

 those system properties that allow us to rely on a
system functioning as required—Littlewood and
Strigini (2000)

 Littlewood and Strigini (2000) say that dependability
includes reliability, safety, security, and availability
among other attributes

Dependability and Reliability
Definitions
Reliability:

 the probability of failure-free software operation for a
specified period of time in a specified environment—
Pan (1999)

 continuity of service—Laprie and Kanoun (1996)

Dependability
How to achieve dependability of software:

 Fault avoidance (process oriented)

 don’t introduce bugs (faults, defects) into the software
in the first place

 Fault tolerance (product oriented)

 fulfil the system’s function even though faults occur

 accept that some faults will occur and hide the
associated failures

Reliability
How to achieve reliability of software:

 Fault forecasting

 How to estimate the current and future quantities of
faults and their consequences—Laprie and Kanoun
(1996)

 Fault removal

 How to reduce the number of faults and the seriousness
of faults—Laprie and Kanoun (1996)

Software vs. Hardware Reliability

UAH Computer Science Department

Myers (1976)

 Software does not wear out

 Software reliability is due to design errors only,
whereas hardware reliability is subject to design errors,
manufacturing errors, and errors due to wear and tear

Littlewood and Strigini (2000)

 Software unreliability is always the result of design
faults which arise from human intellectual failures

 Hardware unreliability has often resulted from the
“perversity of nature”

Software vs. Hardware Reliability

UAH Computer Science Department

Figure taken from Pressman and Maxim (2015)

Software vs. Hardware Reliability

UAH Computer Science Department

Figure taken from Pressman and Maxim (2015)

Software vs. Hardware Reliability
D.L. Parnas (1985) discusses the reasons for why software is more
unreliable than hardware:

“Software systems are discrete state systems that do not have the
repetitive structure shown in computer circuitry. There is seldom a
reason to construct software as highly repetitive structures. The
number of states in software systems is orders of magnitude larger
than the number of states in the non-repetitive parts of computers.
The mathematical functions that describe the behavior of these
systems are not continuous functions and traditional engineering
mathematics does not help in their verification. This difference
clearly contributes to the relative unreliability of computer systems
and the apparent lack of competence of software engineers. It is a
fundamental difference that will not disappear with improved
technology.”

UAH Computer Science Department

Software and Hardware Reliability
Taken Together
However, one must be cautious treating hardware and
software reliability as independent –Bendell and Mellor
(1986):

 Faults may result from interactions between hardware
and software

 Since the way that hardware reliability (of a repairable
system) varies over time is different from the way that
software varies over time, combining the two can be
difficult mathematically

Why Software Reliability Becomes
More Difficult Over Time
Littlewood and Strigini (2000) discuss various reasons
why software reliability tends to become more difficult
over time:

 The problems being addressed by the software have
become more difficult and more novel
 In the early days of computing, software was used to

automate existing successful manual solutions
 but today problems that were never previously solved are

being addressed with software

 Since software is not subject to typical hardware
constraints, it is possible to address problems that were
too complex to address using hardware alone

Why Software Reliability Becomes
More Difficult Over Time
 Software solutions have necessarily become more

complex to address the more complicated problems

 There is a business need for short time periods to
address these solutions

 With software, unlike with hardware, it is usually
impossible to assume that since the software worked
well in one context, it will also perform acceptably in a
similar (but different) context

Software Reliability End of Life

UAH Computer Science Department

Figure taken from Pressman and Maxim (2015)
Figure taken from Cohen (2013)

Cohen (2015)

 Most software systems follow the bathtub curve

 Some software systems move straight from Initial
Phase to Terminal Phase

 Due to poor architecture

 Poor understanding of requirements

 Inadequate understanding of business objectives

UAH Computer Science Department

Software Reliability End of Life

Cohen (2015)

 Adding new bugs especially occurs when changes are made
to add additional features to the code

 Once a software system enters the Terminal Phase, the
system owners enter crisis mode
 This makes it difficult to focus effort and energy on how to

strategically replace the software

 The focus is on tactical fixes to postpone catastrophic failure
in the short time
 However, these typically increase complexity

 This increase in complexity contributes to an increase in failure rate
in the medium term

UAH Computer Science Department

Software Reliability End of Life

Cohen (2015) makes the case that a replacement phase should
be introduced proactively prior to entering the Terminal
Phase
 The Operational Lifetime of the software system is limited.
 Everyone knows this but for some reason will not admit it
 He says:

”The fact that in most instances this acknowledgement is not
accompanied by some obsolescence planning strikes a
dissonant chord. It seems that some in the enterprise expect or
hope that the software system will have an infinite Operational
Lifetime—or at the very least, they hope that they will have
moved on long before their successors need to deal with the
engineering and commercial challenges of the Terminal Phase.”

UAH Computer Science Department

Software Reliability End of Life

Bendell and Mellor (1986):

 Systems analysis—get the requirements right, develop
the right product

 Good management practice

 Team structure

 Good well documented software process

 Design and code inspections

 Method for fault and failure reporting

 Change control

UAH Computer Science Department

How To Achieve Software Reliability

 Good software engineering

 Good design techniques

 Pay attention to the human element

 Formal methods (where appropriate and possible)

 Correctness proofs can be used only on simple
algorithms

 Fault tolerant design

 Well designed testing

UAH Computer Science Department

How To Achieve Software Reliability

Reliability Models
Bendell and Mellor (1986) :

 Be quite clear about the distinction between reliability
and other measures

 Carry out a representative product trial, keeping
adequate records of failure and running time

 Do not rely on one single model but compare the
results of several, on the basis of their predictive
accuracy

Reliability Models
 Bendell and Mellor (1986) quote Littlewood (from a

seminar):

1. Remember that many models perform badly most of
the time

2. Some models seem to perform quite well some of the
time

3. If you are sold a model as the universal answer to all
your problems, be suspicious

4. Put not your trust in optimistic modelers. If the
advocate of a model will tell you openly its
drawbacks as well as its strengths, cherish him

Reliability Models
Dale and Harris (1982) discussed why software reliability
models fail:

“…in many instances software reliability estimates, based
on failure data, have proved to be unacceptably accurate.
The reasons for this degree of inaccuracy are not yet fully
understood but probably include the following:

1. Poor or inappropriate modeling assumptions;

2. Insufficient or poor quality data;

3. Undesirable statistical properties of parameter
estimates”

Reliability Models
Harris in Bendell and Mellor (1986) discussed why
statistical reliability growth models worked poorly:

“…the major flaw in this approach is its failure to observe
scientific method, particularly the aspect that requires one
to show that the premises upon which models are built
have some basis in fact which can be shown to be
plausible, either by analogy or by empirical or rational
justification.”

Reliability Models
Characteristics of (traditional) software reliability
models:

 Discuss probability of failure over a certain execution
exposure

 Execution time

 Calendar time

 sometimes execution time is later converted to calendar time

 Number of test cases

 Number of transactions

Reliability Models
Characteristics of (traditional) software reliability
models (continued from previous page):

 Failures are characterized by studying numbers and
times of previous failure occurrences

 Failures are assumed to be independent of each other

 A failure occurrence is expressed as a random variable

 Failures are unpredictable because the incidence of bugs
(faults) is largely unpredictable

 Conditions under which a program is executed (for
example, input variables) are largely unpredictable

Reliability Models
Dr. Maureen Raley, my former Ph.D. student, spoke to
Dr. Littlewood in England in 1997. She says that Dr.
Littlewood told her:

“Using software reliability models was like looking out the
back window to see where you are going.”

Reliability Models
Software Reliability Growth Model types:

Concave Model S-shaped Model

Reliability Models
Software Reliability Growth Model overall assumptions:

 Measuring residual defects (number of defects
remaining in the software)

 Helps know how much more testing is required

 Helps know whether code is ready to ship

 The number of defects detected per unit time
decreases as defects are detected and repaired
(assuming some kind of testing is going on)

Reliability Models
Brockhurst and Littlewood (1996) examined the
accuracy of 8 different software reliability models, in
terms of short term prediction:

 they found 6 of these models were grossly optimistic
in their predictions while 2 were grossly pessimistic

Reliability Models
In longer term reliability prediction, examining 2 of
these models, Brockhurst and Littlewood found:

 even when a model can do one kind of prediction on a
particular data source, different types of predictions
don’t work even on the same data source

 the accuracy of the models differed on different data
sources

Reliability Models
Brockhurst and Littlewood’s suggested solution was:

 to evaluate a model’s past predictions to actual
observations

 over time build up a sequence of prediction/observations
comparisons on a particular set of data

 then compare multiple models over the same set of data
and choose which model is more accurate in that way

 then use the differences between predictions and actual
observations to recalibrate future predictions over the data
set

Reliability Models
Subburaj (2015) discusses two classifications
of software reliability models:

predictive

 estimator

Reliability Models
Subburaj (2015) describes predictive models
as models that are designed to predict failure
intensity prior to system test

 these models are not very accurate because
the input data to the models is not very
accurate

Reliability Models
According to Subburaj (2015), estimator
models use data from the early part of a
software project to predict the future

 since the data from the same software
project is being used, the estimator models
tend to be more accurate than the predictive
models (since the predictive models are
based on more generic input data)

Reliability Models
Taxonomy of defects from Subbaraj (2015):

Defect Level Example

Mild Symptoms of the defects offend us aesthetically. For instance, a
misspelled output or a badly aligned printout.

Annoying Names are truncated

Disturbing Refuses to handle legitimate transactions. Credit card not
accepted.

Serious Loses track of transactions. Credit made by the customer is lost in
the bank records.

Very Serious Not only the credit is lost, but a debit equal to cheque deposited is
made.

Extreme Such blunders occur frequently.

Intolerable Long-term irrevocable corruption of database.

Catastrophic System fails abruptly.

Infectious System corrupts other systems even though it does not fail by
itself.

Reliability Models
Ullah, Morisio, and Vetro (2015) provided a
methodology to select the best reliability model to
predict residual defects in Open Source Softwre:

Step 1. Collect defect data

Step 2. Extract defects

Step 3. Apply models to data

Step 4. Test against fit and prediction thresholds

Step 5. Test against prediction stability threshold

Step 6. Select the best model

Step 7. Compute Residual Defects

Reliability Models
Ullah, Morisio, and Vetro (2015)

Step 1. Collect defect data

Since looking at open source data, collect
defect data from online repositories

Reliability Models
Ullah, Morisio, and Vetro (2015)
Step 2. Extract defects
1. Want only bugs that are closed or resolved, so filter

out:
 Unresolved bugs
 Enhancements
 Feature requests
 Tasks
 Patches

2. Group data for entire release interval T into
cumulative defects by week

Reliability Models
Ullah, Morisio, and Vetro (2015)

Step 3. Apply models to data

Select data from a time period ending at ¾
of T to use in model fitting

Use nonlinear regression to fit model to this
data

 If the model can describe the data, then:

 Evaluate the model’s goodness of fit based on R2

Reliability Models
Ullah, Morisio, and Vetro (2015)

Step 4. Test against fit and prediction thresholds

 Compare goodness of fit of fitted models to a
(subjectively chosen) R2 threshold

 They used 0.95 based on previous work by Stringfellow
and Andrews (2002)

 Check fitted models’ predictions against actual number
of defects found

 Reject any models that predict fewer defects than the
actual number of defects

Reliability Models
Ullah, Morisio, and Vetro (2015)
Step 5. Test against prediction stability threshold
 A model’s prediction is stable if the prediction for week j

is +/- 10% of the prediction for week j-1
 10% threshold chosen based on work by Zeephongsekul,

Xia, and Kumar (1994)

 Check model stability for the defect data from time
period 3/4T to T
 i=1
 Repeat until week ending in T

 Check stability of cumulative defects from 3/4T+i weeks
 i=i+1

Reliability Models
Ullah, Morisio, and Vetro (2015)

Step 6. Select the best model

Choose the model that has:

 Passed all threshold tests

 Shows the highest number of predicted defects
 This results in worst case cost estimates

 If models widely disagree, consider using
additional assessment techniques before
choosing a model

Reliability Models
Ullah, Morisio, and Vetro (2015)

Step 7. Compute Residual Defects

Choose whether or not to use an open source
software package based on the chosen model

Reliability Models
Ullah, Morisio, and Vetro (2015) applied their
technique to the following open source projects:
 Apache
 Gnome
 C++ Standard library
 JUDDI
 HTTP Server
 XML Beans
 Enterprise Social Messaging Environment (ESME)

Reliability Models
Ullah, Morisio, and Vetro (2015) Examined the following models:

Model Type Date Mean Value Function

Musa-Okumoto Concave 1984

Inflection S-
shaped

S-shaped 1984

Goel-Okumoto Concave 1979

Delayed S-shaped S-shaped 1984

Generalized Goel Concave 1985

Gompertz S-shaped Original
(1832)

Logistic S-shaped 1991

Yamada
Exponential

Concave 1986

Reliability Models
They measured which models would have done the best over the data:

Prediction relative error =
(predicted defects-actual defects)/
predicted defects

Where:
 predicted defects is number of defects a model predicted at 2/3 of the time

interval
 actual defects is defects at the end of the time interval

The model with the lowest prediction relative error is the best model for that
release

Reliability Models

Project Release Using Prediction Relative Error Using Ullah et al.
method

Gnome V2.0 Delayed S-shaped Delayed S-shaped

V2.2 Goel-Okumoto, Yamada
Exponential

Goel-Okumoto

V2.4 Inflection S-shaped, Gompertz Inflection S-shaped

Apache 2.0.35 Delayed S-shaped, Logistic Gompertz

2.0.36 Delayed S-shaped, Logistic,
Gompertz, Generalized Goel

Generalized Goel

2.0.39 Inflection S-shaped, Goel-
Okumoto, Generalized Goel

Goel-Okumoto

C++ Std Lib 4.1.3 Musa-Okumoto Inflection S-shaped

4.2.3 Musa-Okumoto Gompertz

5.0.0 Inflection S-shaped, Yamada
Exponential, Generalized Goel

Yamada exponential

Partial Ullah, Morisio, and Vetro (2015) results:

Reliability Models
Ullah, Morisio, and Vetro (2015) overall results:

• For 17 of 21 releases, their method chose the same
model as was chosen by prediction relative error

• For the other 4 releases, their method chose the
second best model according to prediction relative
error

• Their method threw out the best models in these 4
cases because of a negative prediction relative error

Agile Software Development
Processes
Agile Manifesto, from the Agile Alliance (2016):

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

© 2001, the Agile Manifesto authors
This declaration may be freely copied in any form, but only in its entirety
through this notice.

Agile Software Development
Processes
Agile Principles

1 Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
2 Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.
3 Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.
4 Business people and developers must work together daily throughout
the project.
5 Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job done.
6 The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

Agile Software Development
Processes
Agile Principles

7 Working software is the primary measure of progress.
8 Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.
9 Continuous attention to technical excellence and good design enhances
agility.
10 Simplicity--the art of maximizing the amount of work not done--is
essential.
11 The best architectures, requirements, and designs emerge from self-
organizing teams.
12 At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Reliability with Agile Software
Processes
Far (2007) says:

“In [the] software industry there is a common
assumption that deployment of software reliability
engineering (SRE) contributes to huge overhead in
development and its practice does not match agile
software development which puts emphasis on
traveling light and generating a minimum amount of
project artifacts.”

Reliability with Agile Software
Processes
Far (2007) specifies the Software Reliability
Engineering process as consisting of the following
steps:
1. Define necessary reliability
2. Develop an operational profile
3. Prepare for testing
4. Execute tests
5. Apply test data to guide decisions related to whether

or not the developed software is ready for release

Reliability with Agile Software
Processes
Far (2007) then discusses how these software reliability
engineering process steps can be achieved during agile software
development:
• Same as in non-agile process, define necessary reliability in

terms of failure intensity. This includes:
• Define failure intensity objectives:

• Find acquired hardware and software failure intensities
• Determine developed product failure intensity objectives

Reliability with Agile Software
Processes
Far (2007) further discusses balance between fault prevention, fault removal, and
fault tolerance:

• In non-agile development:
• fault prevention is accomplished through requirements engineering,

stakeholder involvement, and following standards
• Fault removal is accomplished through code reviews and testing after

code has been written
• In agile development:

• In test driven development, unit tests and acceptance tests are written
prior to writing the code. So testing is a fault prevention technique
• With continuous integration combined with test driven development,

regression testing is performed automatically
• When pair programming is used, code reviews become a fault

prevention technique
• Since the process is test driven, the system will continuously be in a

stable, testable, verifiable state
• So the failure intensity value will continually be held below the failure

intensity objective

Reliability with Agile Software
Processes
Far (2007) discusses the use of an operational profile in agile
software development:
 determining usage data based on user story is often not

prescribed by agile software development processes
 however, the general idea of operational development fits well

into agile development, since it goes along with the idea of
develop the most critical functionality first

 Far suggests developing an operational profile as
recommended by Musa

Operational Profiles
Musa (1993) developed operational profiles in five steps:
1. Find customer profile

 Person or group acquiring the system
2. Find user profile

 Person or group using the system
3. Find system-mode profile

 Group operations into execution related activities called system modes.
Determine their occurrence probablities.

4. Find functional profile
 Create a function list for each system mode. Construct a work flow profile

showing the overall process being implemented. This will provide a
quantitative view of how and how often different functions are used.

5. Find operational profile itself
 Develop the operational architecture, the way the user will perform

operations to accomplish functions
 Divide execution into runs—end to end user activities
 Identify input space—the set of input states that can occur during

operation (based on number of input variables) and occurrence
probabilities

 Partition input space into operations—sample across the different input
states/runs

Reliability with Agile Software
Processes
Boerman et al. (2015) examine a model to report software
status to stakeholders outside the agile development activity.
This is based on the Goal Question Metric approach and
resulted in the table on the following slide.
Some definitions:
 Enhancement rate—percentage of project size of previous

sprint that has gone into acceptance or production in
current sprint

 Scope prognosis—combines project size with enhancement
rate to give project owner an idea of the level of functional
completeness, and compared to desired project end date

 Estimation shift—looks at changes between sprints in
person hours to complete a story point

Reliability with Agile Software Processes
Goal Question Metric

1. Achieve the functional
compliance of the software system
from the viewpoint of the project
owner/sponsor

1.a. To what extent are the
functional requirements being
implemented?

Enhancement Rate

Scope Prognosis

Project Size Remaining

1.b. How much scope churn is
there?

Changed product backlog items
(PBIs)

Added PBIs

Rejected PBIs

Project Size

2. Fulfill the expected schedule of
the SD activity from the viewpoint
of the project owner/sponsor?

2.a. When is the delivery of the
software system expected?

Enhancement Rate

Time Prognosis

Project Size remaining

3. Optimize value for money of the
SD activity from the viewpoint of
the project owner/sponsor

3.a. What is the quality of the
development process?

Enhancement Rate

Estimation Shift

Priority Shift

PBIs at risk

3.b. What is the quality of the
product?

Software Quality –quality
measurement based on ISO/IEC
25010—requires effort beyond
typical agile artifacts

3.c. What is the financial status of
the project?

Expenses Prognosis—requires
effort beyond typical agile artifacts

4. Minimize the risk of wasting SD
effort (from the viewpoint of the
project owner/sponsor)

4.a. What is the amount of effort at
risk?

Effort at Risk

Reliability with Agile Software
Processes
Kiwan, Morgan,a nd Benedicenti
(2013) suggest the following metrics to
examine critical factors in an Extreme
Programming (XP) software process,
these are shown in the table on the
following slide.

Reliability with Agile Software
Processes

Metric Description Purpose

Lines of code/hour Measures actual production rate

Number of users stories per
release

Allows comparison of work rates at different
time periods

Percentage of practicing pair
programmers

Improves software quality

Number of post release defects Measures software quality

Percentage of customer
involvement based on face to
face meetings vs. remote
meetings, time zones of
customers

Affects software development cycle

Some Recent Reliability Models
Fiondella and Gokhale (2011) present a model with a bathtub shaped fault
detection rate (fault detection rate varies over time according to the bathtub
curve, increases toward the end of testing).

Over the Ohba failure count data set, using predictive mean square error and
Akaike Information Criteria, it outperforms the following models:
 Inflexion S-shaped model (same as earlier slide)

 Mostly constant fault detection rate—some increase in later stage testing
based on one parameter

 Goel-Okumoto model (same as earlier slide)
 Constant fault detection rate
 Overestimates faults because assumes in later phases that testing based

on techniques used, and ignores that code comprehension in later stages
accounts for a decrease in the remaining number of faults

 Burn-in model—m(t) = α (1-exp(-λγtγ)
 simplifies to Goel-Okumoto when λ=β and γ=1)
 Varying fault detection rate—increasing over time
 Overestimates faults because assumes in later phases that testing based

on techniques used, and ignores that code comprehension in later stages
accounts for a decrease in the remaining number of faults

Some Recent Reliability Models
Predictive Mean Square Error
 the sum of the squared differences between

the cumulative number of faults observed and
the cumulative number of faults predicted for
the last k observations

Akaike Information Criteria
 Two times the number of parameters of the

model minus the log-likelihood

Some Recent Reliability Models
Park et al. (2012) proposed a software reliability model for
embedded systems that takes hardware-related software
failures into account.

They defined hardware related software failures as those
caused by faulty hardware or hardware configuration
changes.

They developed two new models:
 Random model—assumes that hardware related

software failures occur randomly at a constant rate
 Weibull-based model—assumes that hardware related

software failures occur based on a Weibull distribution

Some Recent Reliability Models
Over historical failure data of a combat system
developed by a contractor (at CMMI level 5) with
the Korea Ministry of National Defense,
using Mean Magnitude of Relative Error and Mean
Square Error,
Park et al. (2012) compared their models to:
 Goel-Okumoto model
 Delayed S-shape Model

Their Weibull-based model was better than either Goel-
Okumoto or Delayed S-shape
Their Random model was better than Delayed S-shape but
slightly worse than Goel-Okumoto

Software Quality and Software
Defect Prediction

Predicting defects (bugs) based on analysis of source code is usually considered to
be more software quality related than software reliability related

Much work in this area has involved various kinds of complexity metrics. Two
well known examples traditionally used in functionally oriented software are:

McCabe’s cyclomatic complexity metric, McCabe (1976):
 A count of the number of decision points in code

Halstead’s Software Science, Halstead (1977):
 Measures program vocabulary, length, volume, difficulty and effort

based on number of distinct operators, number of distinct operands,
total number of operators, and total number of operands in a
program

Software Quality and Software
Defect Prediction
 Object-oriented software consists of classes and objects

 Classes are user-defined data types
 An object is an instance of a class
 A class/object contains data and functions

 Data is called attributes or member variables
 Functions are called methods, operations, or member

functions
 Inheritance occurs when one class is an extension of an

existing class (known as a parent-child relationship)
 Methods from a base class can be overridden in child classes
 Methods can be overloaded—methods with the same names

could do somewhat different (though similar) tasks…these
methods are differentiated by which parameters are passed to
the method

Software Quality and Software
Defect Prediction
To measure object-oriented software, several suites
of metrics have been defined, these include:
 Chidamber and Kemerer
 Lorenz and Kidd
 Abreu
 Bansiya and Davis
 Etzkorn and Delugach
 Li
 Stein, Etzkorn, Gholston, Farrington, Utley, Cox,

and Fortune
 Poshyvanyk and Marcus

Software Quality and Software
Defect Prediction
The Chidamber and Kemerer Metrics Suite (1991, 1994) consists of the
following metrics:

 Depth of Inheritance Tree (DIT)
 Distance from the Base Class to the bottommost children in an

inheritance tree
 Number of Children (NOC)

 Number of classes that inherit from the current class
 Response for a Class (RFC)

 All local methods plus all methods called by local methods
 Lack of Cohesion of Methods (LCOM)

 The cohesion of a class is characterized by how closely the local
methods are related to the local instance variables

 Weighted Methods per Class (WMC)
 Sum of the complexities of all local methods

 Coupling Between Objects
 A count of the non-inheritance-related couples with other classes.

Software Quality and Software
Defect Prediction

Lorenz and Kidd suite:

Method metrics:
 Number of message sends
 Lines of Code, Number of statements

Class metrics:
 Number of public instance methods
 Number of instance methods
 Number of instance variables
 DIT
 Number of abstract classes
 Avg number of parameters per method
 Avg number of comment lines/method
Etc.

Software Quality and Software
Defect Prediction
Brito e Abreu (MOOD metrics)(1995):

 Method Hiding Factor 1995 and 1996
– Proportion of methods that are hidden (private or protected)

 Attribute Hiding Factor 1995 and 1996
 Proportion of attributes that are hidden (private or protected)

 Method Inheritance Factor
 Proportion of Methods that are inherited

 Attribute Inheritance Factor
 Proportion of Attributes that are inherited

 Polymorphism Factor 1994 and 1995
 Proportion of all possible polymorphic situations that are actually

polymorphic
 Density of Client/Server relationships between classes
 Etc.

The MOOD metrics specify both per-system metrics as well as per-class
metrics

Software Quality and Software
Defect Prediction
Bansiya and Davis (QMOOD) suite:

 Total number of ancestors
 Proportion of methods accessible from other classes
 Proportion of data which is inaccessible from other classes
 Number of classes directly related to current class
 Number of classes related to current class by attribute definitions alone
 Cohesion between methods of a class, based on parameter type definitions
 Extent of the part-whole relationship
 Number of new or inherited polymorphic methods
 Proportion of methods available to the class that are inherited
 Etc.

The QMOOD metrics include both class level and system level metrics

Software Quality and Software
Defect Prediction
Li and Henry suite (1993) (1993):

 Message Passing Coupling
 Data Abstraction Coupling

 Number of abstract data types employed
 Number of Methods
 Number of semicolons
 Number of attributes+number of operations

Software Quality and Software
Defect Prediction

Semantic Metrics Suites:
Etzkorn and Delugach (2001);
Stein, Etzkorn, Gholston, Farrington, Utley, Cox, and Fortune (2004, 2009):

 Semantic metrics note that syntactic metrics are indirect and often arguable
 Instead, semantic metrics employ a program understanding engine to

automatically understand the software, then measure the knowledge-base
 Includes metrics for cohesion, complexity, coupling, among others

 Example metrics:
 LORM, LORM1, LORM2, LORM3

 Look at the overlap of conceptual graphs representing the class to indicate
cohesion

 CDC (Class Domain Complexity)
 Examines the complexity of the conceptual graphs that represent the class

 SCDE (Semantic Class Definition Entropy)
 Examines the frequency with which domain related concepts occur in the

class

Software Quality and Software
Defect Prediction
Poshyvanyk and Marcus Conceptual
Coupling (2009) and Conceptual Cohesion
Metrics (2009)

These are based on semantic information from source code,
calculated with information retrieval techniques (latent
semantic analysis)

Example metrics:

Conceptual Similarity between methods of a class—the
cosine between the vectors corresponding to methods as they
appear within the semantic space constructed by LSI

Conceptual similarity between two classes—the average of
the similarity methods between all unordered pairs of
methods of two classes

Software Quality and Software
Defect Prediction

Olague, Etzkorn, Gholston, and Quattlebaum (2007) examined defect prediction
of object-oriented classes developed using highly iterative/agile methods:
 metrics suites examined:

 Chidamber and Kemerer (CK) metrics
 Brito e Abreu MOOD metrics
 Bansiya QMOOD metrics

 Analyzed Rhino, a Java implementation of JavaScript
 Used multivariate binary logistic regression

 does not assume linearity of relationship between independent
and dependent variables

 Does not assume variance around the regression line is the same
for all values of the predictor value

 Conclusions:
 MOOD metrics were not good defect predictors
 The CK metrics suites produced the best 3 models for defect

prediction, followed by one QMOOD model
 CK and QMOOD metrics were highly correlated

Software Quality and Software
Defect Prediction

Menzies, et al. (2013) examined whether defect prediction and
effort estimation is best done on a local basis or a global basis:
 Used data from the PROMISE data set::

 For defects: 7 software packages
 For effort: two systems, one with 499 projects, one

with 156 projects
 Metrics examined were subsets of Chidamber and

Kemerer, QMOOD, MOOD, variations of McCabe
metrics

 Used clustering algorithms/rule learners
 Conclusions:

 Lessons learned from clustering (combining small
parts of different data sources) were superior to global
generalizations (over all data) or local lessons learned
(from particular projects)

 Clusters from other sources nearest to the test data
give the best lessons learned

Software Quality and Software
Defect Prediction

Shatnawi (2013) examined defect prediction for open source systems using the Chidamber
and Kemerer metrics:

 Used data from the PROMISE repository over 3 or 4 releases of 4 different open
source projects (ant, camel, jedit, xerces)

 Examined Chidamber and Kemerer metrics only

 Used 7 machine learning classifiers: bayesian networks, support vector machines,
neural networks, k nearest neighbors, decision trees: (C4.5)(CART) and random
forest

 Examined binary variables (fault/no fault) and 4 category dependent variables
(none, low, medium, high):

 None—class does not have faults in current release or previous release

 Low—some faults were fixed for a class in the previous release but no faults
are fixed in the current release

 Medium—no faults in the previous release, but there are faults in the current
release

 High—Faults in both previous and current release

 Conclusions:

 All classifiers did a better job of defect prediction for later releases

 Classifier results for ant and jedit were good, for camel and xerces were not
good

Automated Bug Localization
Automated bug localization refers to techniques that automatically map bug
reports to the sections in code where the bugs reside.

Many modern techniques are based on information retrieval such as Latent
Semantic Indexing (LSI) or Latent Dirichlet Allocation (LDA).

 The comments and identifiers in class definitions in the code represent a text
document

 The bug report represents another text document

LDA is a probabilistic topic model.

 It models each topic as a probability distribution over the set of terms that
make up the vocabulary of the document collection

 Each document is a finite mixture over the set of topics

Similarity measures between documents are computed as the conditional
probability of the query given the document

 A document is relative to a query if it has a high probability of generating the
words in the query

Automated Bug Localization
Lukins, Kraft, and Etzkorn (2010) compared LDA to LSI to
map bug reports to code classes:

 Compared LSI to LDA in Mozilla and Eclipse over 8 bugs
analyzed in a previous study

 For LSI, only 3 out of 8 bugs resulted in the first relevant
method ranked in the top 10 results returned

 For LDA, all eight bugs resulted in the first relevant method
ranked in the top 10 results returned

 Performed a study to analyze how LDA worked on large
software systems with many bugs

 Analyzed 322 bugs across 25 versions of two software
systems: Rhino and Eclipse

 Study was much larger than prior LSI-only studies

 Study showed LDA can scale to work with large systems

Automated Bug Localization
Sisman, Akbar, and Kak (2016) examined automatic bug
localization that employed structural information in
addition to the bag of words concept used by LSI and LDA:

 Used Markov Random Field-based retrieval

 This can be used to take into account proximity of terms and
ordering relationships between terms

 Examined 4000 bugs in AspectJ, Eclipse v3.1, Chrome v.
4.0
 Used BUGLinks (Eclipse, Chrome) and iBugs (AspectJ) datasets

 Conclusions:

 Markov Random Field-based modeling is far superior to bag-of-
words approaches

Recommendations for a Metrics
Program
 It’s important to have a baseline measurement

 Even if there aren’t good thresholds for some metrics,
you can at least examine changes.

 Over time, you should be able to collect the mean values

of metrics …anything which varies considerably from

the mean should be examined

 There’s no point in collecting data unless you use it!

 As much metrics collection as possible should be
automated

 DON’T use metrics on software as a performance metric for
programmers!

 Grady, R., and Caswell, D., Software Metrics,

Establishing a Company-Wide Program, Prentice-Hall,
1987.

References
Agile Alliance. 2016. https://www.agilealliance.org/agile101

Bendell, A. and Mellor, P. (Eds.) 1986. Software Reliability State of the Art Report 14:2. Pergmon Infotech.

Boerman, M.P., Lubsen, Z., Tamburri, D., and Visser, J. 2015. “Measuring and Monitoring Agile Software Development Status,”
Proceedings of the 6th International Workshop on Emerging Trends in Software Metrics, pp. 54-62.

Abreu, F., Goulao, M., and Esteves, R. 1995 “Toward the Design Quality Evaluation of OO Software Systems,” ICSC.

Chidamber , S.R., and Kemerer, C.F., 1991. “Towards a Metrics Suite for Object-Oriented Design,” OOPSLA, 1991.

Chidamber, S.R., and Kemerer, C.F., 1994. “A Metrics Suite for Object-Oriented Design, IEEE Trans. On SW Eng., 1994.

Cohen, J. 2014. The Software Bathtub Curve—Understanding the Software Systems Lifecycle.
https://www.linkedin.com/pulse/20140723115956-15133887-the-software-bathtub-curve-understanding-the-software-systems-lifecycle

Dale, C.J., and Harris, L.N. 1982. Approach to Software Reliability Prediction. Proceedings of the Annual Reliability and
Maintainability Symposium, pp. 167-175.

Etzkorn, L., and Delugach, H. 2001. Towards a Semantic Metrics Suite for Object-Oriented Design, Proceedings of the 34th

International Conference on Technology of Object-Oriented Languages and Systems (TOOLS).

Far, B.. 2007. “Software Reliability Engineering for Agile Software Development,” Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering, pp.694-607.

Fiondella, L., and Gokhale, S.2011. “Software Reliability Model with Bathtub-shaped Fault Detection Rate,” Proceedings of the IEEE
Reliability and Maintainability Symposium.

UAH Computer Science Department

References
Gall, C. (Stein), Lukins, S., Etzkorn, L., Gholston, S., Farrington, P., Utley, D., Fortune, J.,
and Virani, S.2008. “Semantic Software Metrics Computed from Natural Language Design
Specifications,” IET Software (formerly IEE Proceedings Software), Vol. 2, No. 1, pp. 17-26

Goel, A.L. “Software Reliability Models: Assumptions, Limitations, and Applicability,” IEEE
Transactions on Software Engineering. Vol SE-11, No. 12, pp.1411-1423.

Goel, A.L. and Okumoto, K. 1979. “A Time Dependent Error Detection Model for Software
Reliability and Other Performance Measures,” IEEE Transactions on Reliability, pp. 206-211.

Halstead, M. 1977. Elements of Software Science Elsevier.

Kececioglu, D.B. 1991. “Reliability Growth,” Reliability Engineering Handbook Vol 2, Prentice-
Hall.

UAH Computer Science Department

References
Kiwan, H., Morgan, Y.L, Benedicenti, L. 2013. Two Mathematical Modeling Approaches for Extreme Programming. Proceedings of the
26th IEEE Canadian Conference on Electrical and Computer Engineering, .

Laprie, J.C. 1985. Dependable computing and fault tolerance: Concepts and terminology. In: Proceedings of 15th International
Symposium on Fault-Tolerant Computing (FTSC-15), IEEE Computer Society, pp. 2–11

Laprie, J., Kanoun, K. 1996. Software Reliability and System Reliability. Ed. M. Lyu, Handbook of Software Reliability Engineering,
McGraw-Hill. https://secweb.cs.odu.edu/~zeil/cs795SR/Papers/TextBook/

Li, W., 1998. “Another Metric Suite for Object-Oriented Programming,” Journal of Systems and Software.

Li, W., and Henry, S., 1993. “Object-Oriented Metrics that Predict Maintainability,” Journal of Systems and Software.

Littlewood, B., and Strigini, L. 2000. Software Reliability and Dependability: A Roadmap. Proceedings of the International Conference
on Software Engineering (ICSE)—Future of SE Track, pp. 175-188.

Marcus, A., Poshyvanyk, D., Ferenc, R. 2008. Using the Conceptual Cohesion of Classes for Fault Prediction in Object-Oriented
Systems. IEEE Trans. Software Eng. Vol. 34, No. 2, pp. 287-300

McCabe, T.J. 1976. A Complexity Measure. IEEE Trnasactions on Software Engineering, vol.2, no. 4.,pp .308-320.

Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F. Turhan, B., and Zimmerman, T. 2013. “Local versus Global Lessons
for Defect Prediction and Effort Estimation,” IEEE Transactions on Softwre Engineering, Vol. 39, No. 6, pp. 822-834.

Musa, J.D., 1993. “Operational Profiles in Software-Reliability Engineering,” IEEE Software. Vol. 10, no 2, pp. 14-32.

UAH Computer Science Department

References
Olague, H.M., Etzkorn, L.H., Gholston, S., and Quattlebaum, S. 2007. “Empirical Validation of Three Software Metrics
Suites to Predict Fault-Proneness of Object-Oriented Classes Developed using Highly Iterative or Agile Software
Development Processes,” IEEE Transactions on Software Engineering, Vol. 33, No. 6.

Pan, Jiantao. 1999. Software Reliability, Dependable Embedded Systems, Carnegie Mellon.
https://users.ece.cmu.edu/~koopman/des_s99/sw_reliability/

Park, J., Kim, H., Shin, J., Baik, J. 2012. “An Embedded Software Reliability Model with Consideration of Hardware related
Software Failures,” Proceedings of the 6th IEEE Conference on Software Security and Reliability, pp. 207-214.

Parnas, D.L. 1985. Software aspects of strategic defense systems. Communications of the ACM, Vol. 28, Issue 12, pp. 1326-
1335.

Poshyvanyk, D. Marcus, A., Ferenc, R., Gyimóthy, T. 2009.
Using information retrieval based coupling measures for impact analysis. Empirical Software Engineering Vol. 14, No. 1, pp.
5-32

Pressman, R.S. and Maxim, B.R. 2015. Software Engineering: A Practitioner’s Approach. McGraw-Hill.

Quyoum, A., Mehraj, U.D.D., Quadri, S.M.K. 2010. Improving Software Reliability using Software Engineering Approach.
International Journal of Computer Applications, Vol 10, No 5,pp. 41-47.

UAH Computer Science Department

References
Shatnawi, R. (2013) “Empirical Study of Fault Prediction for Open-Source Systems using the
Chidamber and Kemerer Metrics,” IET Software, pp. 113-120.

Sisman, B., Akbar, S.A., and Kak, A.C. (2016). “Exploiting Spatial Code Proximity and Order for
Improved Source Code Retrieval for Bug Localization,” Journal of Software Evolution and Process,
early-published online.

Stein C., Etzkorn,L., Gholston, S., Farrington, P., Utley, D., Cox, G., and Fortune, J. 2009.
“Semantic Metrics: Metrics Based on Semantic Aspects of Software,” Applied Artificial
Intelligence, Vol. 23, Issue 1, pp.44-77.

Stringfellow, C., and Andrews, A.A. 2002. “An Empirical Method for Selecting Software Reliability
Growth Models,” Empirical Software Engineering, vol. 7, no. 4, pp. 319-343.

Subburaj, R. 2015. Software Reliability Engineering. McGraw-Hill.

Ullah, N., Morisio, M., and Vetro, A. 2015. “Selecting the Best Reliability Model to Predict Residual
Defects in Open Source Software,” IEEE Computer, Vol. 48, No. 6, pp. 50-58.

Wood, A. 1996. Software Reliability Growth Models. TANDEM. Technical Report 96.1

UAH Computer Science Department

References
Yamada, S., Ohba, M., Osaki, S. 1984. “s-Shaped Software Reliability Growth Models and
Their Applications,” IEEE Transactions on Reliability, Vol. R-33.

Yamada, S., Ohtera, H., and Narihisa, H. 1986. “S-Shaped Reliability Growth Modeling for
Software Error Detection,” IEEE Transactions on Reliability, Vol. R-32, pp. 475-484.

Zeephongsekul, P., Xia,G., and Kumar, S. 1994. “Software Reliability Growth Model: Primary
Failures Generate Secondary Faults under Imperfect Debugging,” IEEE Transactions On
Reliability, Vol. 42, no. 3, pp. 408-413.

UAH Computer Science Department

