
Letha Etzkorn, Ph.D., P.E.

Computer Science Department

University of Alabama in Huntsville

Dependability and Reliability
Definitions
Dependability:

·the ability of a system to deliver the intended level of
service to its usersɂLaprie (1985)

·those system properties that allow us to rely on a
system functioning as requiredɂLittlewood and
Strigini (2000)

·Littlewood and Strigini (2000) say that dependability
includes reliability, safety, security, and availability
among other attributes

Dependability and Reliability
Definitions
Reliability:

·the probability of failure -free software operation for a
specified period of time in a specified environmentɂ
Pan (1999)

·continuity of serviceɂLaprie and Kanoun (1996)

Dependability
How to achieve dependability of software:

·Fault avoidance (process oriented)

·ÄÏÎȭÔ ÉÎÔÒÏÄÕÃÅ ÂÕÇÓ ɉÆÁÕÌÔÓȟ ÄÅÆÅÃÔÓɊ ÉÎÔÏ ÔÈÅ ÓÏÆÔ×ÁÒÅ
in the first place

·Fault tolerance (product oriented)

·ÆÕÌÆÉÌ ÔÈÅ ÓÙÓÔÅÍȭÓ ÆÕÎÃÔÉÏÎ ÅÖÅÎ ÔÈÏÕÇÈ ÆÁÕÌÔÓ ÏÃÃÕÒ

·accept that some faults will occur and hide the
associated failures

Reliability
How to achieve reliability of software:

·Fault forecasting

·How to estimate the current and future quantities of
faults and their consequencesɂLaprie and Kanoun
(1996)

·Fault removal

·How to reduce the number of faults and the seriousness
of faultsɂLaprie and Kanoun (1996)

Software vs. Hardware Reliability

UAH Computer Science Department

Myers (1976)

·Software does not wear out

·Software reliability is due to design errors only,
whereas hardware reliability is subject to design errors,
manufacturing errors, and errors due to wear and tear

Littlewood and Strigini (2000)

·Software unreliability is always the result of design
faults which arise from human intellectual failures

·Hardware unreliability has often resulted from the
ȰÐÅÒÖÅÒÓÉÔÙ ÏÆ ÎÁÔÕÒÅȱ

Software vs. Hardware Reliability

UAH Computer Science Department

Figure taken from Pressman and Maxim (2015)

Software vs. Hardware Reliability

UAH Computer Science Department

Figure taken from Pressman and Maxim (2015)

Software vs. Hardware Reliability
D.L. Parnas(1985) discusses the reasons for why software is more
unreliable than hardware:

Ȱ3ÏÆÔ×ÁÒÅ ÓÙÓÔÅÍÓ ÁÒÅ ÄÉÓÃÒÅÔÅ ÓÔÁÔÅ ÓÙÓÔÅÍÓ ÔÈÁÔ ÄÏ ÎÏÔ ÈÁÖÅ ÔÈÅ
repetitive structure shown in computer circuitry. There is seldom a
reason to construct software as highly repetitive structures. The
number of states in software systems is orders of magnitude larger
than the number of states in the non-repetitive parts of computers.
The mathematical functions that describe the behavior of these
systems are not continuous functions and traditional engineering
mathematics does not help in their verification. This difference
clearly contributes to the relative unreliability of computer systems
and the apparent lack of competence of software engineers. It is a
fundamental difference that will not disappear with improved
ÔÅÃÈÎÏÌÏÇÙȢȱ

UAH Computer Science Department

Software and Hardware Reliability
Taken Together
However, one must be cautious treating hardware and
software reliability as independent ɀBendell and Mellor
(1986):

·Faults may result from interactions between hardware
and software

·Since the way that hardware reliability (of a repairable
system) varies over time is different from the way that
software varies over time, combining the two can be
difficult mathematically

Why Software Reliability Becomes
More Difficult Over Time
Littlewood and Strigini (2000) discuss various reasons
why software reliability tends to become more difficult
over time:

·The problems being addressed by the software have
become more difficult and more novel
·In the early days of computing, software was used to

automate existing successful manual solutions
· but today problems that were never previously solved are

being addressed with software

·Since software is not subject to typical hardware
constraints, it is possible to address problems that were
too complex to address using hardware alone

Why Software Reliability Becomes
More Difficult Over Time
·Software solutions have necessarily become more

complex to address the more complicated problems

·There is a business need for short time periods to
address these solutions

·With software, unlike with hardware, it is usually
impossible to assume that since the software worked
well in one context, it will also perform acceptably in a
similar (but different) context

Software Reliability End of Life

UAH Computer Science Department

Figure taken from Pressman and Maxim (2015)
Figure taken from Cohen (2013)

Cohen (2015)

·Most software systems follow the bathtub curve

·Some software systems move straight from Initial
Phase to Terminal Phase

·Due to poor architecture

·Poor understanding of requirements

·Inadequate understanding of business objectives

UAH Computer Science Department

Software Reliability End of Life

Cohen (2015)

·Adding new bugs especially occurs when changes are made
to add additional features to the code

·Once a software system enters the Terminal Phase, the
system owners enter crisis mode
·This makes it difficult to focus effort and energy on how to

strategically replace the software

·The focus is on tactical fixes to postpone catastrophic failure
in the short time
· However, these typically increase complexity

· This increase in complexity contributes to an increase in failure rate
in the medium term

UAH Computer Science Department

Software Reliability End of Life

Cohen (2015) makes the case that a replacement phase should
be introduced proactively prior to entering the Terminal
Phase
·The Operational Lifetime of the software system is limited.
·Everyone knows this but for some reason will not admit it
·He says:
ȱ4ÈÅ ÆÁÃÔ ÔÈÁÔ ÉÎ ÍÏÓÔ ÉÎÓÔÁÎÃÅÓ ÔÈÉÓ ÁÃËÎÏ×ÌÅÄÇÅÍÅÎÔ ÉÓ ÎÏÔ
accompanied by some obsolescence planning strikes a
dissonant chord. It seems that some in the enterprise expect or
hope that the software system will have an infinite Operational
Lifetimeɂor at the very least, they hope that they will have
moved on long before their successors need to deal with the
ÅÎÇÉÎÅÅÒÉÎÇ ÁÎÄ ÃÏÍÍÅÒÃÉÁÌ ÃÈÁÌÌÅÎÇÅÓ ÏÆ ÔÈÅ 4ÅÒÍÉÎÁÌ 0ÈÁÓÅȢȱ

UAH Computer Science Department

Software Reliability End of Life

Bendell and Mellor (1986):

·Systems analysisɂget the requirements right, develop
the right product

·Good management practice

·Team structure

·Good well documented software process

·Design and code inspections

·Method for fault and failure reporting

·Change control

UAH Computer Science Department

How To Achieve Software Reliability

·Good software engineering

·Good design techniques

·Pay attention to the human element

·Formal methods (where appropriate and possible)

·Correctness proofs can be used only on simple
algorithms

·Fault tolerant design

·Well designed testing

UAH Computer Science Department

How To Achieve Software Reliability

Reliability Models
Bendell and Mellor (1986) :

·Be quite clear about the distinction between reliability
and other measures

·Carry out a representative product trial, keeping
adequate records of failure and running time

·Do not rely on one single model but compare the
results of several, on the basis of their predictive
accuracy

Reliability Models
·Bendell and Mellor (1986) quote Littlewood (from a

seminar):

1. Remember that many models perform badly most of
the time

2. Some models seem to perform quite well some of the
time

3. If you are sold a model as the universal answer to all
your problems, be suspicious

4. Put not your trust in optimistic modelers. If the
advocate of a model will tell you openly its
drawbacks as well as its strengths, cherish him

Reliability Models
Dale and Harris (1982) discussed why software reliability
models fail:

ȰȣÉÎ ÍÁÎÙ ÉÎÓÔÁÎÃÅÓ ÓÏÆÔ×ÁÒÅ ÒÅÌÉÁÂÉÌÉÔÙ ÅÓÔÉÍÁÔÅÓȟ ÂÁÓÅÄ
on failure data, have proved to be unacceptably accurate.
The reasons for this degree of inaccuracy are not yet fully
understood but probably include the following:

1. Poor or inappropriate modeling assumptions;

2. Insufficient or poor quality data;

3. Undesirable statistical properties of parameter
ÅÓÔÉÍÁÔÅÓȱ

Reliability Models
Harris in Bendell and Mellor (1986) discussed why
statistical reliability growth models worked poorly:

ȰȣÔÈÅ ÍÁÊÏÒ ÆÌÁ× ÉÎ ÔÈÉÓ ÁÐÐÒÏÁÃÈ ÉÓ ÉÔÓ ÆÁÉÌÕÒÅ ÔÏ ÏÂÓÅÒÖÅ
scientific method, particularly the aspect that requires one
to show that the premises upon which models are built
have some basis in fact which can be shown to be
plausible, either by analogy or by empirical or rational
ÊÕÓÔÉÆÉÃÁÔÉÏÎȢȱ

Reliability Models
Characteristics of (traditional) software reliability
models:

·Discuss probability of failure over a certain execution
exposure

·Execution time

·Calendar time

· sometimes execution time is later converted to calendar time

·Number of test cases

·Number of transactions

Reliability Models
Characteristics of (traditional) software reliability
models (continued from previous page):

·Failures are characterized by studying numbers and
times of previous failure occurrences

·Failures are assumed to be independent of each other

·A failure occurrence is expressed as a random variable

·Failures are unpredictable because the incidence of bugs
(faults) is largely unpredictable

·Conditions under which a program is executed (for
example, input variables) are largely unpredictable

Reliability Models
Dr. Maureen Raley, my former Ph.D. student, spoke to
Dr. Littlewood in England in 1997. She says that Dr.
Littlewood told her:

Ȱ5ÓÉÎÇ ÓÏÆÔ×ÁÒÅ ÒÅÌÉÁÂÉÌÉÔÙ ÍÏÄÅÌÓ ×ÁÓ ÌÉËÅ ÌÏÏËÉÎÇ ÏÕÔ ÔÈÅ
ÂÁÃË ×ÉÎÄÏ× ÔÏ ÓÅÅ ×ÈÅÒÅ ÙÏÕ ÁÒÅ ÇÏÉÎÇȢȱ

Reliability Models
Software Reliability Growth Model types:

Concave Model S-shaped Model

