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What Is a Stochastic Process?

 A mathematical representation of a system that 
evolves over time, subject to random variation.

 The state of the system at a given time is captured by a 
random variable 𝑋𝑛 or 𝑋 𝑡

 Stochastic processes can evolve in:

◦ Discrete-time {𝑋𝑛, 𝑛 = 0,1,2… }

◦ Continuous-time {𝑋(𝑡), 𝑡 ≥ 0}



Daniel F. Silva,
silva@auburn.edu

Examples of Stochastic Processes

 Stock price at closing of trading day

 Stock price at any given time

 Inventory of multiple items at the end of each day

 Traffic in a website at any given time

 Failure state of a component at any given time

 Failure state of several component at any given time



Daniel F. Silva,
silva@auburn.edu

Applications of Stochastic Processes

 Revenue management

 Inventory planning

 Google’s search engine

 Call center staffing

 Derivatives pricing

 Reliability, availability and maintainability
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Defining a Stochastic Process

 States

◦ What are the states the system can occupy?

 Events

◦ What can happen in the system that triggers a 
change in the state?

 Probabilities

◦ What are the odds of events happening?
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Markov Chains

 Markov chains are a class of stochastic process

 MCs have a discrete (countable) state space 𝑆

◦ Finite

◦ Or infinite

◦ E.g. 0,1 , 𝑎, 𝑏, 𝑐 , {0,1,2,3, …∞}

 MCs can evolve in

◦ Discrete time

◦ Continuous time
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Markov Chains

 MCs have the “Markov Property”:

𝑃 𝑋 𝑡0 + 𝑠 𝑋 𝑡 , ∀𝑡 ≤ 𝑡0 = 𝑃 𝑋 𝑡0 + 𝑠 𝑋 𝑡0

 In words, the future only depends on the 
present and not on the past.

 In continuous time MCs, times between events 
follow an exponential distribution.
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The Exponential Distribution

 If random variable 𝑋 is exponential, then:

◦ 𝑃 𝑋 > 𝑡 = 𝑒−𝜆𝑡

◦ 𝐸 𝑋 =
1

𝜆

◦ 𝑃 𝑋 > 𝑡 + 𝑠 𝑋 > 𝑠 = 𝑃 𝑋 > 𝑡 = 𝑒𝜆𝑡

◦ This is called the memorylessness property.
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Markov Chains Dynamics

 The MC starts out at each state 𝑖 ∈ 𝑆 with 
probability 𝑎(𝑖) at time 𝑡 = 0.

 The MC remains at state 𝑖 for an exponentially 
distributed amount of time, with parameter 𝜆𝑖.

 After that the MC transitions to a new state 𝑗, 
with each state 𝑗 ∈ 𝑆 having a transition 
probability 𝑝𝑖𝑗. 

 And so on…



Daniel F. Silva,
silva@auburn.edu

Defining a Markov Chain

 State space: 𝑆

◦ All possible states the system can occupy

 Initial distribution vector: 𝑎

◦ 𝑎 𝑠 =Probability that the system is at state 𝑠 at 𝑡 = 0

 Generator matrix: 𝑄

◦ 𝑄𝑖𝑗 = ቊ
𝜆𝑖𝑝𝑖𝑗
−𝜆𝑖

𝑖𝑓 𝑖 ≠ 𝑗
𝑖𝑓 𝑖 = 𝑗
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Transition Diagrams for MC

 A graph where:

◦ The nodes are each 𝑠 ∈ S

◦ The arcs are each 𝜆𝑖 × 𝑝𝑖𝑗 > 0 ∀𝑖 ≠ 𝑗; 𝑖, 𝑗 ∈ 𝑆

 Example

◦ 𝑆 = 1,2

◦ 𝜆 = 1,10

◦ 𝑃 =
0.5 0.5
0.2 0.8

◦ 𝑄 =
−0.5 0.5
2 −2

1 2

0.5

2
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Measures of Performance

 𝑝𝑠 𝑡 : Probability of being in state 𝑠 at time 𝑡

◦ In vector form: 𝑃(𝑡)

 𝜋𝑠: Long-run average probability of being in 
state 𝑠

◦ In vector form: 𝜋

 𝑀𝑇𝑇𝐴: Average time until absorption

◦ Relevant when there is a set of “absorbing states”
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Transient Analysis

 The objective is to calculate 𝑃(𝑡) for some 𝑡

𝑃 𝑡 = 𝑎 ⋅ 𝑒𝑄𝑡 = 𝑎 ⋅ 𝐼 +

𝑛=1

∞
𝑄𝑡 𝑛

𝑛!
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Steady-state analysis

 The objective is to compute 𝜋

 Solve the following system of equations

𝜋𝑄 = 0



𝑠∈𝑆

𝜋𝑠 = 1
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Mean Time To Absorption 

 We can calculate MTTA as

𝑀𝑇𝑇𝐴 =

𝑠∈𝐵

𝑧𝑠

 Where 𝐴 is the set of absorbent states, 𝐵 are 
non-absorbent states and 𝐴 ∪ 𝐵 = 𝑆

 And where 

𝑧𝑠 = න
0

∞

𝑝𝑠 𝑡 𝑑𝑡
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Two-state Component

 Consider a single component that fails at a 
constant hazard rate 𝜆. Assume that repairs 
occur at a rate 𝜇.

◦ What is the probability that the component will be 
working in 1000 hours?

◦ What is the long-run availability of the component?

◦ What is the expected time to the first failure?
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Two-state Component

 State space: 𝑆 = {𝑢𝑝, 𝑑𝑜𝑤𝑛}

 Transition diagram: 

 Initial state: “up”

up down

𝜆

𝜇
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Two-state Component

 The probability of being in each state after 𝑡 is:

𝑝𝑢𝑝 𝑡 =
𝜇

𝜆 + 𝜇
+

𝜆

𝜆 + 𝜇
𝑒− 𝜆+𝜇 𝑡

𝑝𝑑𝑜𝑤𝑛 𝑡 =
𝜆

𝜆 + 𝜇
−

𝜆

𝜆 + 𝜇
𝑒− 𝜆+𝜇 𝑡

 Therefore: 

lim
𝑡→∞

𝑝𝑢𝑝 𝑡 = 𝜋𝑢𝑝 =
𝜇

𝜆 + 𝜇

lim
𝑡→∞

𝑝𝑑𝑜𝑤𝑛 𝑡 = 𝜋𝑑𝑜𝑤𝑛 =
𝜆

𝜆 + 𝜇
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N parallel components with 
shared repairs
 Consider a system with N identical components 

in parallel, which fail at a constant rate 𝜆. 
Assume that repairs occur one at a time at a rate 
𝜇, per repair. There is only one repair resource

◦ What is the long-run availability of the system?

◦ On average how many components are operational?

A1

A2
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N parallel components with 
shared repairs
 State = Number of working components

 State space: 𝑆 = {0,1,2, … , 𝑁}

 Transition diagram: 

𝑁 𝑁-1

𝑁𝜆

𝜇

1 0

𝜆

𝜇

2

2𝜆

𝜇

𝑁-2

(𝑁 − 1)𝜆

𝜇

…

3𝜆(𝑁 − 2)𝜆

𝜇𝜇
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N parallel components with 
shared repairs
 Balance equations

𝑁𝜆𝜋𝑁 = 𝜇𝜋𝑁−1
…

2𝜆𝜋2 = 𝜇𝜋1
𝜆𝜋1 = 𝜇𝜋0

 Normalization: 

 Then,



𝑛=1

𝑁

𝜋𝑛 = 1

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝜋0 = 1 − 

𝑛=0

𝑁
𝜇𝑛

𝑛! 𝜆𝑛

−1
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N parallel components with 
shared repairs
 For example for

𝐸 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 

𝑛=1

𝑁

𝑛 ×
𝜇𝑛

𝑛! 𝜆𝑛
𝜋0 = 4.36

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝜋0 = 1 − 

𝑛=0

𝑁
𝜇𝑛

𝑛! 𝜆𝑛

−1

= 99.932%

𝜆 = 0.01ℎ𝑟−1, 𝜇 = 0.1ℎ𝑟−1, 𝑁 = 5
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Workstation-Fileserver 

 Consider a system with 2 identical workstations 
and one fileserver, connected by a network. 

 The system is operational as long as:
◦ At least 1 workstation is up

◦ The fileserver is up
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Workstation-Fileserver 

 Assuming exponentially distributed times to 

failure

◦ w : failure rate of workstation

◦ f : failure rate of file-server

 Assume that components are repairable

◦ w: repair rate of workstation

◦ f: repair rate of file-server

 Shares repairs. File-server has priority for repair 

over workstations
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Workstation-Fileserver 

 State = (Number of operational workstations, 
number of operational fileservers)

 𝑆 = { 2,1 , 1,1 , 0,1 , 2,0 , 1,0 , (0,0)}
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Workstation-Fileserver

 Transition diagram:

0,0

2,1 1,1

1,02,0

0,1

f

2w

2w

w

w w

w

f f ff f
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Workstation-Fileserver 

 Long run average Availability
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜋2,1 + 𝜋1,1

 Example:

 Then 
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.9999

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Workstation-Fileserver

 Instantaneous availability

 𝐴 𝑡 = 𝑝2,1 𝑡 + 𝑝1,1 𝑡

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Workstation-Fileserver

 Calculate time until system failure

2,1 1,1

1,02,0

0,1

f

2w w

w

f
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Workstation-Fileserver

 𝐿𝑒𝑡

 𝑀𝑇𝑇𝐹 = 𝑧2,1 + 𝑧11

 We can solve 𝑧2,1, 𝑧1,1 numerically using 
MATLAB as:

◦ 𝑧2,1 = 
0

∞
𝑝2,1 𝑡 𝑑𝑡 , 𝑧1,1 = 

0

∞
𝑝1,1 𝑡 𝑑𝑡

 Then 𝑀𝑇𝑇𝐹 = 19992 ℎ𝑜𝑢𝑟𝑠

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Workstation-Fileserver

 Suppose workstations cannot be repaired

2,1 1,1

1,02,0

0,1

f

2w w

f
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Workstation-Fileserver

 𝐿𝑒𝑡

 𝑀𝑇𝑇𝐹 = 𝑧2,1 + 𝑧11

 We can solve 𝑧2,1, 𝑧1,1 numerically using 
MATLAB as:

◦ 𝑧2,1 = 
0

∞
𝑝2,1 𝑡 𝑑𝑡 , 𝑧1,1 = 

0

∞
𝑝1,1 𝑡 𝑑𝑡

 Then 𝑀𝑇𝑇𝐹 = 9993 ℎ𝑜𝑢𝑟𝑠

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 



EXTENSIONS AND MORE 
COMPLEX MODELS



Daniel F. Silva,
silva@auburn.edu

Infinite Markov Chains

 Suppose that your system consists of infinitely many 
states.

 Example: The state represents the number of 
components awaiting repair, from an infinite pool.

 Some infinite-state MCs are well understood
◦ Traditional queues M/M/1, M/M/c, etc.
◦ So-called quasi-birth-death processes.

 These kinds of models can be solved by
◦ Analytical methods (for queues)
◦ Matrix-Analytic methods (for quasi-birth-death processes). 
◦ Fluid approximations to a continuous system
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Phase-type Distributions

 Suppose that not all times are exponential

 Example: Repair times a “nearly” deterministic.

 PH-type distributions allow us to model the holding 
times at some states as other distributions.

 PH-type distributions use a new MC to model a single 
transition.

 Some distributions that can be well approximated by PH-
type are:

◦ Erlang

◦ Deterministic

◦ Hyper- and Hypo-exponential
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Markov Decision Process (MDP)

 Suppose you can make a decision at each transition.

 Example: Choose which component gets a repaired.

 MDPs add an Action Space 𝐴 to the definition of a MC.

 Now the problem is not just determining performance.

 We choose a policy (the action to take in each state).

 The objective is to optimize a certain measure of 
performance. Like

◦ Maximize time to failure

◦ Maximize average availability

◦ Maximize number of repairs



COMPUTATIONAL TOOLS 
FOR MARKOV MODELS
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Software for Markov Chains

 SMCSolver

 Butools

 SHARPE

 MKV

 jMarkov

◦ Available at www.jmarkov.org

http://www.jmarkov.org/
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jMarkov

 Object-oriented framework for Markov models

 Designed for modeling and solving

 Coded in Java

 Can be imported into other programs

 Consists of four modules:
◦ Core module: General finite MCs

◦ jQBD: Highly structured infinite MCs

◦ jPhase: Structured MCs with phase-type times

◦ jMDP: Markov Decision Processes
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jMarkov – Core module

 Builds MC from simple rules.

 Handles finite discrete and continuous-time MCs.

 Calculates 𝜋 and 𝑃 𝑡 and expected rewards.
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jQBD

 Only needs specification of the repeating structure.

 Calculates expected rewards.
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jPhase

 Allows specification of PH-type random variables

 Permits including PH-type variables in MC models

 Includes fitting capabilities for estimating PH parameters

 Generates PH-type random variates for simulations
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jMDP

 Builds MDP models from 
simple rules

 Supports finite and infinite 
horizon, discrete and 
continuous time MDPs

 Calculates optimal 
deterministic policies for 
total, average and 
discounted cost criteria

 Solvers calculate model 
parameters on-the-fly



INTERNATIONAL STANDARDS 
FOR APPLYING FOR MARKOV 

MODELS IN RAM
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IEC Standards

 The International Electrotechnical Commission 
(IEC) has 2 standards concerning Markov 
modeling techniques:

◦ IEC 61165: Application of Markov techniques

◦ IEC 61508: Functional safety of electrical/ electronic/ 
programmable electronic safety-related systems
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IEC 61165

 Provides guidance on the application of Markov 
techniques to model and analyze a system and 
estimate reliability, availability, maintainability 
and safety measures. 

◦ Gives an overview of available methods.

◦ Reviews the relative merits of each method and their 
applicability.
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IEC 61508

 Part 1: General requirements

 Part 2: Requirements for electrical/ electronic/ 
programmable safety-related systems

 Part 3: Software requirements

 Part 4: Definitions and abbreviations

 Part 5: Examples of methods for the determination of  
safety  integrity  levels

 Part 6: Guidelines on the application of IEC 61508-2  
and  -3

 Part 7: Overview of techniques and measures



SUMMARY &
CONCLUSION
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Conclusions

 Markov model are a powerful mathematical modeling 
technique.

 Markov Chains can be used in many applications of 
Reliability, Availability and Maintainability

 Markov models can provide exact analytical solutions 
to small problems.

 More elaborate Markov models can incorporate 
decision-making, non-exponential distributions and 
other extensions.

 Computational tools, such as jMarkov, can be used to 
solve large scale Markov models easily.
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