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What Is a Stochastic Process?

 A mathematical representation of a system that 
evolves over time, subject to random variation.

 The state of the system at a given time is captured by a 
random variable 𝑋𝑛 or 𝑋 𝑡

 Stochastic processes can evolve in:

◦ Discrete-time {𝑋𝑛, 𝑛 = 0,1,2… }

◦ Continuous-time {𝑋(𝑡), 𝑡 ≥ 0}
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Examples of Stochastic Processes

 Stock price at closing of trading day

 Stock price at any given time

 Inventory of multiple items at the end of each day

 Traffic in a website at any given time

 Failure state of a component at any given time

 Failure state of several component at any given time
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Applications of Stochastic Processes

 Revenue management

 Inventory planning

 Google’s search engine

 Call center staffing

 Derivatives pricing

 Reliability, availability and maintainability
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Defining a Stochastic Process

 States

◦ What are the states the system can occupy?

 Events

◦ What can happen in the system that triggers a 
change in the state?

 Probabilities

◦ What are the odds of events happening?
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Markov Chains

 Markov chains are a class of stochastic process

 MCs have a discrete (countable) state space 𝑆

◦ Finite

◦ Or infinite

◦ E.g. 0,1 , 𝑎, 𝑏, 𝑐 , {0,1,2,3, …∞}

 MCs can evolve in

◦ Discrete time

◦ Continuous time
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Markov Chains

 MCs have the “Markov Property”:

𝑃 𝑋 𝑡0 + 𝑠 𝑋 𝑡 , ∀𝑡 ≤ 𝑡0 = 𝑃 𝑋 𝑡0 + 𝑠 𝑋 𝑡0

 In words, the future only depends on the 
present and not on the past.

 In continuous time MCs, times between events 
follow an exponential distribution.
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The Exponential Distribution

 If random variable 𝑋 is exponential, then:

◦ 𝑃 𝑋 > 𝑡 = 𝑒−𝜆𝑡

◦ 𝐸 𝑋 =
1

𝜆

◦ 𝑃 𝑋 > 𝑡 + 𝑠 𝑋 > 𝑠 = 𝑃 𝑋 > 𝑡 = 𝑒𝜆𝑡

◦ This is called the memorylessness property.
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Markov Chains Dynamics

 The MC starts out at each state 𝑖 ∈ 𝑆 with 
probability 𝑎(𝑖) at time 𝑡 = 0.

 The MC remains at state 𝑖 for an exponentially 
distributed amount of time, with parameter 𝜆𝑖.

 After that the MC transitions to a new state 𝑗, 
with each state 𝑗 ∈ 𝑆 having a transition 
probability 𝑝𝑖𝑗. 

 And so on…
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Defining a Markov Chain

 State space: 𝑆

◦ All possible states the system can occupy

 Initial distribution vector: 𝑎

◦ 𝑎 𝑠 =Probability that the system is at state 𝑠 at 𝑡 = 0

 Generator matrix: 𝑄

◦ 𝑄𝑖𝑗 = ቊ
𝜆𝑖𝑝𝑖𝑗
−𝜆𝑖

𝑖𝑓 𝑖 ≠ 𝑗
𝑖𝑓 𝑖 = 𝑗
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Transition Diagrams for MC

 A graph where:

◦ The nodes are each 𝑠 ∈ S

◦ The arcs are each 𝜆𝑖 × 𝑝𝑖𝑗 > 0 ∀𝑖 ≠ 𝑗; 𝑖, 𝑗 ∈ 𝑆

 Example

◦ 𝑆 = 1,2

◦ 𝜆 = 1,10

◦ 𝑃 =
0.5 0.5
0.2 0.8

◦ 𝑄 =
−0.5 0.5
2 −2

1 2

0.5

2
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Measures of Performance

 𝑝𝑠 𝑡 : Probability of being in state 𝑠 at time 𝑡

◦ In vector form: 𝑃(𝑡)

 𝜋𝑠: Long-run average probability of being in 
state 𝑠

◦ In vector form: 𝜋

 𝑀𝑇𝑇𝐴: Average time until absorption

◦ Relevant when there is a set of “absorbing states”
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Transient Analysis

 The objective is to calculate 𝑃(𝑡) for some 𝑡

𝑃 𝑡 = 𝑎 ⋅ 𝑒𝑄𝑡 = 𝑎 ⋅ 𝐼 +෍

𝑛=1

∞
𝑄𝑡 𝑛

𝑛!
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Steady-state analysis

 The objective is to compute 𝜋

 Solve the following system of equations

𝜋𝑄 = 0

෍

𝑠∈𝑆

𝜋𝑠 = 1
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Mean Time To Absorption 

 We can calculate MTTA as

𝑀𝑇𝑇𝐴 =෍

𝑠∈𝐵

𝑧𝑠

 Where 𝐴 is the set of absorbent states, 𝐵 are 
non-absorbent states and 𝐴 ∪ 𝐵 = 𝑆

 And where 

𝑧𝑠 = න
0

∞

𝑝𝑠 𝑡 𝑑𝑡



EXAMPLES OF MARKOV 
CHAIN MODELS FOR 

RELIABILITY, AVAILABILITY 
AND MAINTAINABILITY



Daniel F. Silva,
silva@auburn.edu

Two-state Component

 Consider a single component that fails at a 
constant hazard rate 𝜆. Assume that repairs 
occur at a rate 𝜇.

◦ What is the probability that the component will be 
working in 1000 hours?

◦ What is the long-run availability of the component?

◦ What is the expected time to the first failure?
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Two-state Component

 State space: 𝑆 = {𝑢𝑝, 𝑑𝑜𝑤𝑛}

 Transition diagram: 

 Initial state: “up”

up down

𝜆

𝜇
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Two-state Component

 The probability of being in each state after 𝑡 is:

𝑝𝑢𝑝 𝑡 =
𝜇

𝜆 + 𝜇
+

𝜆

𝜆 + 𝜇
𝑒− 𝜆+𝜇 𝑡

𝑝𝑑𝑜𝑤𝑛 𝑡 =
𝜆

𝜆 + 𝜇
−

𝜆

𝜆 + 𝜇
𝑒− 𝜆+𝜇 𝑡

 Therefore: 

lim
𝑡→∞

𝑝𝑢𝑝 𝑡 = 𝜋𝑢𝑝 =
𝜇

𝜆 + 𝜇

lim
𝑡→∞

𝑝𝑑𝑜𝑤𝑛 𝑡 = 𝜋𝑑𝑜𝑤𝑛 =
𝜆

𝜆 + 𝜇
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N parallel components with 
shared repairs
 Consider a system with N identical components 

in parallel, which fail at a constant rate 𝜆. 
Assume that repairs occur one at a time at a rate 
𝜇, per repair. There is only one repair resource

◦ What is the long-run availability of the system?

◦ On average how many components are operational?

A1

A2
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N parallel components with 
shared repairs
 State = Number of working components

 State space: 𝑆 = {0,1,2, … , 𝑁}

 Transition diagram: 

𝑁 𝑁-1

𝑁𝜆

𝜇

1 0

𝜆

𝜇

2

2𝜆

𝜇

𝑁-2

(𝑁 − 1)𝜆

𝜇

…

3𝜆(𝑁 − 2)𝜆

𝜇𝜇
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N parallel components with 
shared repairs
 Balance equations

𝑁𝜆𝜋𝑁 = 𝜇𝜋𝑁−1
…

2𝜆𝜋2 = 𝜇𝜋1
𝜆𝜋1 = 𝜇𝜋0

 Normalization: 

 Then,

෍

𝑛=1

𝑁

𝜋𝑛 = 1

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝜋0 = 1 − ෍

𝑛=0

𝑁
𝜇𝑛

𝑛! 𝜆𝑛

−1
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N parallel components with 
shared repairs
 For example for

𝐸 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = ෍

𝑛=1

𝑁

𝑛 ×
𝜇𝑛

𝑛! 𝜆𝑛
𝜋0 = 4.36

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝜋0 = 1 − ෍

𝑛=0

𝑁
𝜇𝑛

𝑛! 𝜆𝑛

−1

= 99.932%

𝜆 = 0.01ℎ𝑟−1, 𝜇 = 0.1ℎ𝑟−1, 𝑁 = 5
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Workstation-Fileserver 

 Consider a system with 2 identical workstations 
and one fileserver, connected by a network. 

 The system is operational as long as:
◦ At least 1 workstation is up

◦ The fileserver is up
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Workstation-Fileserver 

 Assuming exponentially distributed times to 

failure

◦ w : failure rate of workstation

◦ f : failure rate of file-server

 Assume that components are repairable

◦ w: repair rate of workstation

◦ f: repair rate of file-server

 Shares repairs. File-server has priority for repair 

over workstations
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Workstation-Fileserver 

 State = (Number of operational workstations, 
number of operational fileservers)

 𝑆 = { 2,1 , 1,1 , 0,1 , 2,0 , 1,0 , (0,0)}



Daniel F. Silva,
silva@auburn.edu

Workstation-Fileserver

 Transition diagram:

0,0

2,1 1,1

1,02,0

0,1

f

2w

2w

w

w w

w

f f ff f
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Workstation-Fileserver 

 Long run average Availability
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜋2,1 + 𝜋1,1

 Example:

 Then 
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.9999

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Workstation-Fileserver

 Instantaneous availability

 𝐴 𝑡 = 𝑝2,1 𝑡 + 𝑝1,1 𝑡

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Workstation-Fileserver

 Calculate time until system failure

2,1 1,1

1,02,0

0,1

f

2w w

w

f
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Workstation-Fileserver

 𝐿𝑒𝑡

 𝑀𝑇𝑇𝐹 = 𝑧2,1 + 𝑧11

 We can solve 𝑧2,1, 𝑧1,1 numerically using 
MATLAB as:

◦ 𝑧2,1 = ׬
0

∞
𝑝2,1 𝑡 𝑑𝑡 , 𝑧1,1 = ׬

0

∞
𝑝1,1 𝑡 𝑑𝑡

 Then 𝑀𝑇𝑇𝐹 = 19992 ℎ𝑜𝑢𝑟𝑠

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Workstation-Fileserver

 Suppose workstations cannot be repaired

2,1 1,1

1,02,0

0,1

f

2w w

f
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Workstation-Fileserver

 𝐿𝑒𝑡

 𝑀𝑇𝑇𝐹 = 𝑧2,1 + 𝑧11

 We can solve 𝑧2,1, 𝑧1,1 numerically using 
MATLAB as:

◦ 𝑧2,1 = ׬
0

∞
𝑝2,1 𝑡 𝑑𝑡 , 𝑧1,1 = ׬

0

∞
𝑝1,1 𝑡 𝑑𝑡

 Then 𝑀𝑇𝑇𝐹 = 9993 ℎ𝑜𝑢𝑟𝑠

1111 5.0,0.1,00005.0,0001.0   hhhh fwfw 
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Infinite Markov Chains

 Suppose that your system consists of infinitely many 
states.

 Example: The state represents the number of 
components awaiting repair, from an infinite pool.

 Some infinite-state MCs are well understood
◦ Traditional queues M/M/1, M/M/c, etc.
◦ So-called quasi-birth-death processes.

 These kinds of models can be solved by
◦ Analytical methods (for queues)
◦ Matrix-Analytic methods (for quasi-birth-death processes). 
◦ Fluid approximations to a continuous system
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Phase-type Distributions

 Suppose that not all times are exponential

 Example: Repair times a “nearly” deterministic.

 PH-type distributions allow us to model the holding 
times at some states as other distributions.

 PH-type distributions use a new MC to model a single 
transition.

 Some distributions that can be well approximated by PH-
type are:

◦ Erlang

◦ Deterministic

◦ Hyper- and Hypo-exponential
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Markov Decision Process (MDP)

 Suppose you can make a decision at each transition.

 Example: Choose which component gets a repaired.

 MDPs add an Action Space 𝐴 to the definition of a MC.

 Now the problem is not just determining performance.

 We choose a policy (the action to take in each state).

 The objective is to optimize a certain measure of 
performance. Like

◦ Maximize time to failure

◦ Maximize average availability

◦ Maximize number of repairs



COMPUTATIONAL TOOLS 
FOR MARKOV MODELS
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Software for Markov Chains

 SMCSolver

 Butools

 SHARPE

 MKV

 jMarkov

◦ Available at www.jmarkov.org

http://www.jmarkov.org/
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jMarkov

 Object-oriented framework for Markov models

 Designed for modeling and solving

 Coded in Java

 Can be imported into other programs

 Consists of four modules:
◦ Core module: General finite MCs

◦ jQBD: Highly structured infinite MCs

◦ jPhase: Structured MCs with phase-type times

◦ jMDP: Markov Decision Processes



Daniel F. Silva,
silva@auburn.edu

jMarkov – Core module

 Builds MC from simple rules.

 Handles finite discrete and continuous-time MCs.

 Calculates 𝜋 and 𝑃 𝑡 and expected rewards.
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jQBD

 Only needs specification of the repeating structure.

 Calculates expected rewards.
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jPhase

 Allows specification of PH-type random variables

 Permits including PH-type variables in MC models

 Includes fitting capabilities for estimating PH parameters

 Generates PH-type random variates for simulations
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jMDP

 Builds MDP models from 
simple rules

 Supports finite and infinite 
horizon, discrete and 
continuous time MDPs

 Calculates optimal 
deterministic policies for 
total, average and 
discounted cost criteria

 Solvers calculate model 
parameters on-the-fly



INTERNATIONAL STANDARDS 
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IEC Standards

 The International Electrotechnical Commission 
(IEC) has 2 standards concerning Markov 
modeling techniques:

◦ IEC 61165: Application of Markov techniques

◦ IEC 61508: Functional safety of electrical/ electronic/ 
programmable electronic safety-related systems
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IEC 61165

 Provides guidance on the application of Markov 
techniques to model and analyze a system and 
estimate reliability, availability, maintainability 
and safety measures. 

◦ Gives an overview of available methods.

◦ Reviews the relative merits of each method and their 
applicability.
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IEC 61508

 Part 1: General requirements

 Part 2: Requirements for electrical/ electronic/ 
programmable safety-related systems

 Part 3: Software requirements

 Part 4: Definitions and abbreviations

 Part 5: Examples of methods for the determination of  
safety  integrity  levels

 Part 6: Guidelines on the application of IEC 61508-2  
and  -3

 Part 7: Overview of techniques and measures



SUMMARY &
CONCLUSION
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Conclusions

 Markov model are a powerful mathematical modeling 
technique.

 Markov Chains can be used in many applications of 
Reliability, Availability and Maintainability

 Markov models can provide exact analytical solutions 
to small problems.

 More elaborate Markov models can incorporate 
decision-making, non-exponential distributions and 
other extensions.

 Computational tools, such as jMarkov, can be used to 
solve large scale Markov models easily.
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