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What Is a Stochastic Process?

A mathematical representation of a system that
evolves over time, subject to random variation.

The state of the system at a given time is captured by a
random variable X,, or X (t)

Stochastic processes can evolve in:
Discrete-time {X,,, n=0,1,2...}
Continuous-time {X(t), t = 0}
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Examples of Stochastic Processes

» Stock price at closing of trading day

» Stock price at any given time

* Inventory of multiple items at the end of each day
 Trafficin a website at any given time

 Failure state of a component at any given time

 Failure state of several component at any given time
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Applications of Stochastic Processes

* Revenue management
 Inventory planning
» Google’s search engine
 Call center staffing
e Derivatives pricing

 Reliability, availability and maintainability
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Defining a Stochastic Process

» States
> What are the states the system can occupy?

» Events

> What can happen in the system that triggers a
change in the state?

* Probabilities
> What are the odds of events happening?
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Markov Chains

Markov chains are a class of stochastic process

MCs have a discrete (countable) state space S
Finite
Or infinite
E.g.{0,1},{a, b, c},{0,1,2,3, ... oo}

MCs can evolve in
Discrete time
Continuous time
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Markov Chains

MCs have the “"Markov Property”:
P{X(ty + $)[X(t),Vt < to} = P{X(to + $)[X (L)}

In words, the future only depends on the
present and not on the past.

In continuous time MCs, times between events
follow an exponential distribution.
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The Exponential Distribution

* If random variable X is exponential, then:

o

P{X >t}=e M

: E[X]=%

o

PIX>t+s|X>s}=P{X >t} =eM

(0]

This is called the memorylessness property.
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Markov Chains Dynamics

The MC starts out at each state i € S with
probability a(i) attimet = 0.

The MC remains at state i for an exponentially
distributed amount of time, with parameter 4;.

After that the MC transitions to a new state j,
with each state j € S having a transition
probability p; ;.

And so on...
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Defining a Markov Chain

» State space: §
> All possible states the system can occupy

* Initial distribution vector: a
> a(s) =Probability that the system is at state satt = 0

* Generator matrix:

.0, = Aipij  if i #E]
S ifi=]
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Transition Diagrams for MC

» A graph where:
> The nodes are each s € S
> ThearcsareeachA; X p;; > 0Vi #j;i,j€S

* Example 0c
- §S={12}

mmoQ O
0.5 0.5

TP = (0.2 0.8)

0= (—0.5 0.5)
) -2
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Measures of Performance

» ps(t): Probability of being in state s at time t
° Invector form: P(t)

* 1T;: Long-run average probability of being in
state s

° |n vector form:

» MTTA: Average time until absorption
> Relevant when there is a set of “absorbing states”
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Transient Analysis

» The objective is to calculate P(t) for some t

PO =a-e®=q 1 Z(Qt)n
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Steady-state analysis

» The objective isto compute

» Solve the following system of equations

Q) =0

Zns=1

SES
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Mean Time To Absorption

We can calculate MTTA as

MTTA = 2 Ze

SEB

Where A is the set of absorbent states, B are
non-absorbent statesandAUB =S

And where

Zg :j ps(t)dt
0
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EXAMPLES OF MARKOV

CHAIN MODELS FOR
RELIABILITY, AVAILABILITY

AND MAINTAINABILITY
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Two-state Component

Consider a single component that fails at a
constant hazard rate 4. Assume that repairs
occur at a rate L.

What is the probability that the component will be
working in 1000 hours?

What is the long-run availability of the component?
What is the expected time to the first failure?
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Two-state Component

» State space: S = {up, down}

 Transition diagram:

* Initial state: “up”

A
U
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Two-state Component

The probability of being in each state after t is:

A
pup(t): s + e~ (At

A+u A+u
A A
_ =+t
t —
pdown() /1-|-,Ll )l+,ue
Therefore:
u
li t) = = —
1M Pup(t) = Tup = 37—
A

F>00 pdown( ) down 1+ i "O—
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S

N parallel components with

nared repairs

» Consider a system with N identical components

in parallel, which fail at a constant rate 4.
Assume that repairs occur one at a time at a rate
K, per repair. There is only one repair resource

> What is the long-run availability of the system?

> On average how many components are operational?
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N parallel components with

shared repairs
» State = Number of working components

» Statespace: S ={0,1,2, ..., N}

e Transition diagram:

NA (N—1A (N—2)2 31 22 A

ololoNEN01010

u u u
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S

N parallel components with

nared repairs

» Balance equations

NAmy = umy_4

2A1T, = umy
Ay = pmy

» Normalization:

N
Znn=1

n=1

* Then,

Availability =1—mg =1 — <

n=0
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N parallel components with

shared repairs
» For example for

A=0.01hr7%, u=0.1hr1, N=5
N -1
Availability = 1-my = 1= » ——] =99.932%
n=0
N
E[Operational] = 2 n')t” Ty = 4.36
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Workstation-Fileserver

Consider a system with 2 identical workstations
and one fileserver, connected by a network.

The system is operational as long as:

At least 1 workstation is up
The fileserver is up

File Server

Computer Network

Workstation 1 Workstation 2
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Workstation-Fileserver

Assuming exponentially distributed times to
failure

A,,: failure rate of workstation
A failure rate of tile-server
Assume that components are repairable
L,: repair rate of workstation
{4z repair rate of file-server

Shares repairs. File-server has priority for repair

over workstations
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Workstation-Fileserver

» State = (Number of operational workstations,
number of operational fileservers)

» § ={(21),(1,1),(0,1),(2,0),(1,0), (0,0)}
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Workstation-Fileserver

Transition diagram:

27\’W ‘/\ }\"W
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Workstation-Fileserver

» Long run average Availability
Availability = my 1 + 1y 4

» Example:
A, =0.00010h™, A, =0.00005h™, 1, =1.0h™*, gz, =0.5h™"

* Then
Availability = 0.9999
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Workstation-Fileserver

Instantaneous availability
A(t) = pa1(8) + p1(2)
A, =0.0001 h™ 4. =0.00005 h™ u, =1.0 h™ w; =0.5 h™
]. I ¥ 1 ]
Inst. Avail. &
0.99998
@y 0-99996 :
0.99994 .
0.99992 -
0.9999 F ——C0—0——0———

0.99988 ;—— 560 80100
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Workstation-Fileserver

» Calculate time until system failure
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2,1 ) ( 1,1 ) 0,1
4 Hw ~—
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2,0 1,0
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Workstation-Fileserver

Let
A, =0.0001 h™ A; =0.00005 h™ u, =1.0 h™ w; =0.5 h™

MTTF = Z2’1 + Z11

We can solve z; 1, z; ; numerically using
MATLAB as:

Z21 = fooo P21 (t)dt, Z11 = fooo p1,1(t)dt

Then MTTF = 19992 hours 5% AUBURN
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Workstation-Fileserver

» Suppose workstations cannot be repaired
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Workstation-Fileserver

Let
A, =0.0001 h™ A; =0.00005 h™ u, =1.0 h™ w; =0.5 h™

MTTF = Z2’1 + Z11

We can solve z; 1, z; ; numerically using
MATLAB as:

Z21 = fooo P21 (t)dt, Z11 = fooo p1,1(t)dt

Then MTTF = 9993 hours 8 AUBURN
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> EXTENSIONS AND MORE
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Infinite Markov Chains

Suppose that your system consists of infinitely many
states.

Example: The state represents the number of
components awaiting repair, from an infinite pool.

Some infinite-state MCs are well understood
Traditional queues M/M/1, M/M/c, etc.
So-called quasi-birth-death processes.

These kinds of models can be solved by
Analytical methods (for queues)
Matrix-Analytic methods (for quasi-birth-death processes).
Fluid approximations to a continuous system
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Phase-type Distributions

Suppose that not all times are exponential
Example: Repair times a “"nearly” deterministic.

PH-type distributions allow us to model the holding
times at some states as other distributions.

PH-type distributions use a new MC to model a single
transition.

Some distributions that can be well approximated by PH-
type are:

Erlang

Deterministic

Hyper- and Hypo-exponential
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Markov Decision Process (MDP)

Suppose you can make a decision at each transition.
Example: Choose which component gets a repaired.
MDPs add an Action Space A to the definition of a MC.
Now the problem is not just determining performance.

We choose a policy (the action to take in each state).

The objective is to optimize a certain measure of
performance. Like

Maximize time to failure

Maximize average availability

Maximize number of repairs
} AUBURN
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> COMPUTATIONALTOOLS

FOR MARKOV MODELS
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Software for Markov Chains

SMCSolver

e Butools

SHARPE

MKV

* jMarkov

> Available at www.imarkov.org
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http://www.jmarkov.org/

jMarkov

Object-oriented framework for Markov models
Designed for modeling and solving
Coded in Java

Can be imported into other programs

Consists of four modules:
Core module: General finite MCs
jAQBD: Highly structured infinite MCs
jPhase: Structured MCs with phase-type times
JMDP: Markov Decision Processes
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jMarkov — Core module

 Builds MC from simple rules.
» Handles finite discrete and continuous-time MCs.
 Calculates m and P(t) and expected rewards.

[ £ IMarkov -- examples,jmarkov.QueueMMIN — O x
File Edit Control Options
[ T & d& % ' | Debuglevel: 1=

Main Browse States Rates MOPs Events Output

B compnents operational N identical parallel components - Shared repair i
= . Repair completed Eepair Rate = 4.0
----- o 1 components operational Failure Rate = 2.0
= 0 1 components operational
EI . Repair completed
----- 0 2 components operational
EI . Component breakdown
----- 0 0 components operational
=3 o 2 components operational
. Repair completed
----- 0 3 components operational
EI . Component breakdown
----- 0 1 components operational
El’ 3 components operational v (] <€ >

Total components = 4

Debug Info

FLIILIINY RELTIS. ..

Computing Events Rates ad
Computing Events Rate for Event Repair completed

Computing Ewvents Rate for Event Component breakdown W

Daniel F. Si| L€ >
silva@aub Model was succesfully generated, It has § states. |
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jQBD

* Only needs specification of the repeating structure.
» Calculates expected rewards.

| £ IMarkow -- examples.jmarkov.QueueMEk] — O *
File Edit Control Options
[ | & & @ § Debuglevel 03

Main Browse States Rates MOPs Events Output
Output
EQUILIBRUM S
STATE FROBLE. DESCRIPTION
I
L:0{50) 0.273846 Level: 0, subk-State: Server status = 0 &
L:1({51) 0.13903 Level: 1, sub-State: Server status = 1
L:l{52) 0.115846 Level: 1, sub-State: Server status = 2
L:1{53) 0.09&655 Lewvel: 1, sub-State: Server status = 3
L:2({51) 0.05487 Level: 2, sub-State: Server status = 1
L:2{52) 0.068504 Level: 2, sub-State: Server status = 2
L:2({53) 0.0702% Lewvel: 2, sub-State: Server status = 3
W
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jPhase

» Allows specification of PH-type random variables

Daniel F. Silva,
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Permits including PH-type variables in MC models

[£:| Gamma con alpha: 1.0, lambda: 3.0 @
PDF
- 400
Sgquare Error: 10.54 ern
{Reject if Pvalue < 0.05)
Chiz P-Value: 0.394 L 200
K-% P-Value: 0.449
Saved in file: 135827 3431339.xt - 100
: . o
OO0 026 050 075 100 125
¥
— Thearical Dist. B Data
Ok Save histogram

Includes fitting capabilities for estimating PH parameters
Generates PH-type random variates for simulations
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iMDP

Builds MDP models from
simple rules

Supports finite and infinite
horizon, discrete and
continuous time MDPs

Calculates optimal
deterministic policies for
total, average and
discounted cost criteria

Solvers calculate model
parameters on-the-fly

Daniel F. Silva,
silva@auburn.edu

]

g Problems @ Javadoc [, Declaration < Sean

<terminated> CarDealerProblemn [Java Application] C\F

11 =tates found.

Value Iter. Solver [Avg)

R R R R W Best PDlic:“lr L

In every stage do:
STATE
LEVEL O
LEVEL 1
LEVEL 2
LEVEL 3
LEVEL 4
LEVEL S
LEVEL &
LEVEL 7
LEVEL &
LEVEL 9
LEVEL 10

______ > ACTICH

—————— > CRDER & UNITS
—————— > CRDER & UNITS
—————— > CRDER & UNITS
______ > CRDER 7
—————— > CRDER 4 UNITS
—————— > CRDER 4 UNITS
______ > ORDER 4 UNITS
______ > QRDER 3 UNITS
______ > QRDER 0 UNITS
______ > ORDER 0O UMNITS
______ > ORDER 0 UMNITS

xxxxx

UHITS

Q& AUBURN
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INTERNATIONAL STANDARDS
FOR APPLYING FOR MARKOV
MODELS IN RAM
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IEC Standards

The International Electrotechnical Commission
(IEC) has 2 standards concerning Markov
modeling techniques:

IEC 61165: Application of Markov techniques

IEC 61508: Functional safety of electrical/ electronic/
programmable electronic safety-related systems

AUBURN

Daniel F. Silva, ] UNIVER SITY
silva@auburn.edu




IEC 61165

Provides guidance on the application of Markov
techniques to model and analyze a system and
estimate reliability, availability, maintainability
and safety measures.

Gives an overview of available methods.

Reviews the relative merits of each method and their
applicability.
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IEC 61508

Part 1: General requirements

Part 2: Requirements for electrical/ electronic/
programmable safety-related systems

Part 3: Software requirements
Part 4: Definitions and abbreviations

Part 5: Examples of methods for the determination of
safety integrity levels

Part 6: Guidelines on the application of IEC 61508-2
and -3

Part 7: Overview of techniques and measures
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CONCLUSION
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Conclusions

Markov model are a powerful mathematical modeling
technique.

Markov Chains can be used in many applications of
Reliability, Availability and Maintainability

Markov models can provide exact analytical solutions
to small problems.

More elaborate Markov models can incorporate
decision-making, non-exponential distributions and
other extensions.

Computational tools, such as jMarkov, can be used to

solve large scale Markov models easily.
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