

Department of Aerospace Engineering

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL)

A Game Theory Approach to Negotiations in Defense Acquisitions in the Context of Value-Driven Design: An Aircraft System Case Study

> Garima Vinay Bhatia Iowa State University

Motivation

- Major Defense Acquisition Programs (MDAPs)
 - Acquisition of Large-Scale Complex Engineered Systems
 - Highly complex procedures involving multiple milestones and stages
 - 100s to 1000s of individuals
 involved right from contracting and
 design to sustainment and disposal
 - Two prime stakeholders in defense acquisitions:
 - i. Government (DoD)
 - ii. Commercial Organization (E.g. Boeing)

Butterfield, J., et al., *Digital methods for process development in manufacturing and their relevance to value driven design.* Journal of Aerospace Operations, 2012. **1**(4): p. 387-400.

Motivation

- Challenges in current defense acquisition methods
 - Traditional method of contracting: Based on cost
 - Shift of focus from operations to cost post Cold War
 - Numerous associated cost overruns and schedule delays despite aiming to keep the budget low
 - No commercial market exists for large-scale weapon systems
 - Monopolies (single seller) and even monopsonies (single buyer) do not give DoD the power to dictate prices
 - More than \$314 billion at stake annually
 - Current approach based on requirements rather than true preference

Motivation

- New methods of contracting such as price-based and performancebased proposed
- New methods still based on requirements, which serve as proxies to true preferences
- Value-models help in capturing true preferences of the stakeholders
- Value-based acquisitions proposed in recent times

A Broad Overview of the Traditional Acquisitions Process

Background

- Value-Driven Design
- A value function is created that captures the true preferences of the stake-holder and is flowed down to guide the subsystem designers instead of requirements
- Enables direct comparison of alternatives through value
- Reduces requirements removes restrictions on design space
- Value, V = f(System attributes)
- Can be used as an objective function in MDO

Background

- Theory of Bargaining
 - Used for cooperative decision making
 - In sequential bargaining, players take turn at making offers for dividing a resource
 - If an offer is rejected by a player, he gets to make a counter offer in the next round
 - Process continues till an offer is accepted
 - Value of the resource decreases by a factor δ after each round
 - δ represents a discount factor or patience level of players
 - δ : Number between 0 & 1

Background

- Theory of Bargaining (Contd.)
 - Proposals by players:

Player $1 = x^* = (x_1^*, x_2^*)$ Player $2 = y^* = (y_1^*, y_2^*)$

Equilibria conditions for players:

$$x_2^* \ge \delta_2 y_2^*$$
$$y_1^* \ge \delta_1 x_1^*$$

 A player accepts an offer only if he believes that he can't receive a better payoff by waiting for the next round and making an offer

Research Question 1 – Combined Contracting

 "Can a game theory enhanced value approach to negotiations in a combined priced and performance-based contracting scenario lead to a better system design as compared to that obtained by using the traditional requirements-driven method?"

Aircraft System Example

- Mission objective: Transport personnel and ammunition to war site and back
- Teams designed as per aircraft components

Wing

Ribs

Tail

Spars

Hierarchical Decomposition of Organization

Value Functions

- Government
 - True preference of government: Operational Success
 - Depends on survivability (p(S)) and effectiveness (p(E/S))
 - Value function: Probability of Operational Success $(p(OS_i))$ $p(OS_i) = p(S \cap E) = p(S). p(E/S)$
 - p(S) = f(Velocity,Stealth)
 - $p(E/S) = f(Range, M_{payload})$

Value Functions

- Contractor
 - True preference of contractor: Profit
 - Function of price and cost

Profit = Total price - Total cost

- Total price = No. of aircraft sold * Price per aircraft
- Total Cost = No. of aircraft sold * Cost per aircraft
- Cost per aircraft = Sum of costs of all subsystems

- Performance factor
 - Government lays operational requirement, in this case taken to be the probability of operational success
 - Assumed value: Atleast 72% successful $p(OS_i) \ge 0.72$

Price Factor

- Contractor uses this requirement to come up with an optimal price for system based on total cost and return rate (r) on investment
- Generally, 15% return offered by government
- In this case, price evaluated for return rates from 10% to 20%

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL)

Contractor

- Value Factor
 - Profit (value) evaluated as a function of price
- Formal Optimization Statement

find X

$$= \begin{bmatrix} X_{discrete}, X_{integer}, L_{wing}, L_{chord}, L_{fuselage}, Mass_{payload} \end{bmatrix} \\ Min f(X) = -Profit per aircraft \\ = -(r * Cost per aircraft) \\ s.t g_1: 0.72 - p(OS_i) \le 0$$

Contractor

Obtained values of operational attributes and price

Attribute	Value
Range (in km)	17,800
Mass of payload (in	80,000
kg)	
Cruise velocity (in	510
m/s)	
Stealth	0.9
p(OS _i)	0.72

r	Price per	Profit per	Total Profit
	aircraft (\$M)	aircraft (\$M)	(\$B)
10%	590	53.67	5.36
15%	616	80.4	8.04
20%	644	107	10.7

- Value function
 - $V_c = Profit per aircraft$
 - $= 1.0142 * Price per aircraft 536.709 * 10^{6}$
 - Assumed: No. of aircraft sold = 100
 - Thus, Total profit = Profit per aircraft*100
- Government
- Performs a market research to determine price of system
- Value to government: Arbitrary measure of benefit depending on price
- Value decreases with increase in price
 - $V_g = Value \ per \ aircraft$
 - $= -0.0205 * Price per aircraft + 13.3225 * 10^{6}$

- Threshold values
- Negotiation
 - Government starts with lowest price
 - Contractor starts with highest price
 - Government increases price with every rejected offer
 - Contractor reduces price with every rejected offer
 - Offer accepted if equilibrium condition met

 $Vc \ge \delta_g * Vg$ $V_g \ge \delta_c * V_C$

- Results evaluated for different values of δ

- Offer accepted immediately when patience level is very low
- Lower patience yields lower value
- Sensitivity of value function important
- When both players are highly patient, offer accepted by government

Patie facto	ence rs (δ)	Roun	Of acce	fer pted	Final price	*7	V _c (\$B)
δ_g	δ _c	ds	Govt	Comp	per aircraft (\$M)	<i>V_g</i> (* 10 ³)	(Profit from 100 aircraft)
0.1	0.95	2	~	×	644.05	119	11.06
0.2	0.9	4	~	×	637.61	251	8.84
0.9	0.1	1	×	~	601.11	999	7.29
0.3	0.8	3	×	~	607.12	262	7.90
0.5	0.5	1	×	~	601.11	999	7.29
0.6	0.7	3	×	~	607.12	525	7.90
0.98	0.98	8	~	×	624.92	511	9.31

Cost-Based Contracting

- Comparison of proposed method made with traditional method
- Requirement: Minimize cost
- Secondary requirements:
 - Total weight \leq 150000 kg
 - Total range \geq 9000 km
- Requirements passed down hierarchy of company
 - Additional requirements formed

 $find X = \begin{bmatrix} X_{discrete}, X_{integers}, X_{cont} \end{bmatrix}$ Min f(X) = Cost per aircraft $= \sum_{i=1}^{m} Cost_i$ $s.t g_1: Mass_{total} - 150000 \ kg \le 0$ $g_2: 9000 \ km - Range \le 0$ $g_3: 165 \ m/s - V_{crusie} \le 0$ $8 \ m \le L_{wing} \le 12 \ m$ $2m \le L_{chord} \le 4m$ $12 \ m \le L_{fuselage} \le 20 \ m$ $15000 \ kg \le Mass_{payload} \le 50000 \ kg$

Cost-Based Contracting

Obtained values of operational attributes and price

Attribute	Value	r	Price per	Profit per
Range (in km)	9000		aircraft	aircraft
Mass of payload (in	50,000		(\$M)	(\$M)
kg)				
Cruise velocity (in	257	10%	29	2.64
m/s)		15%	30	3.96
Stealth	0.5			0.00
$p(OS_i)$	0.40	20%	31	5.28

- Low values of operational attributes
- Remarkably low profit and probability of operational success
- Requirements act as proxies

Threshold values

	Threshold price	Starting offer	
	(\$M)	(\$M)	
Government	32.00	29.50	
Contractor	29.05	31.69	

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL)

Total

Profit (\$M)

264

396

528

Cost-Based Contracting

- Offer accepted immediately when patience level is very low
- Lower patience yields lower value
- Sensitivity of value function important
- When both players are highly patient, offer accepted by contractor

Patie facto	ence rs (δ)		Offer accepted		Final		
δ_g	δ _c	Rounds	Govt	Comp	price per aircraft (\$M)	P _g (* 10 ³)	<i>P_c</i> (\$M) (Profit from 100 aircraft)
0.1	0.95	2	~	×	31.690	100	528.70
0.2	0.9	4	✓	×	31.380	208	447.30
0.9	0.1	1	×	~	29.500	848	309.00
0.3	0.8	3	×	~	29.790	224	338.50
0.5	0.5	1	×	~	29.500	848	309.00
0.6	0.7	3	×	~	29.795	448	399.72
0.98	0.98	9	×	~	30.697	421	428.78

Comparison of Results

	Cost-based acquisitions	Combined acquisitions
Range (in km)	9000	17,800
Mass of payload (in kg)	50,000	80,000
Cruise velocity (in m/s)	257	510
Stealth	0.5	0.9
$p(OS_i)$	0.40	0.72
Total profit for lowest contractor patience (\$)	309.00 million	7.29 billion

- Significantly higher operational success and profit, i.e. higher payoffs to both players
- Much better operational attributes using combined contracting
- Reduced requirements and value approach yielded better results than traditional requirements-driven cost-based approach
- Player order affects payoff of player whose offer is accepted
- Making the first offer yields better results if offer is accepted

Negotiating over Attributes

- Purely value-based approach
- Assumption: Government not concerned with cost
- Each player aims at maximizing his value
- Attributes: Reflect value
- Each player has own optimal attribute set that maximizes his value
- Player wishes for system to be designed using his attribute set
- Negotiation directly over attributes

Multidisciplinary Optimization and Design Engineering Laboratory (MODEL)

Common attributes I. Range II. Mass of payload III. Velocity at cruise IV.Stealth

Negotiation over Attributes

Negotiated Final Design

Conclusion

 The research showed that a value-based approach to defense contracting can help in capturing true preferences of both the government and the contractor and help achieve a better system design as compared to the traditional requirements-driven approaches

Contact

- Dr. Christina Bloebaum
 Iowa State University
 Email: <u>bloebaum@iastate.edu</u>
- Garima V. Bhatia
 UAH
 Email: gb0027@uah.edu

Present

- Graduate student in Industrial and Systems Engineering, UAH (PhD)
- Advisor: Dr. Bryan Mesmer

Department of Industrial and Systems Engineering and Engineering Management

Present work

- Journal article on previous work
- Analysis of the trends in Systems Engineering through the years (Journal article)
 - MBSE
 - Lean
 - Scrum
 - Value

Department of Industrial and Systems Engineering and Engineering Management Thank you! Questions?

Department of Industrial and Systems Engineering and Engineering Management