

RAM X Training Summit

RAM Model and Simulation of U.S. Army Aviation Fleet

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Presented by:

Seth E. Farrington

RAM Data Scientist

U.S. Army Aviation and Missile Research, Development, and Engineering Center

8 November 2017

Overview

Challenge

- No in house model available in RAM
- Existing models are built from top down
 - Makes broad assumptions about individual part performance
 - Does not allow for precise what-if analysis

Benefit

- Quick, detailed, accurate What-If analysis
 - Accurately predict effect of part or maintenance improvements
- Holistic understanding of part reliability on fleet readiness
- Improved mission planning
- Completely customizable to desired metrics

Approach

- Probabilistic model of individual part reliability
 - Dynamically query part history for greatest accuracy and timeliness
- Stochastic simulation of aircraft and fleet
 - Account for maintenance practices
 - Predict aircraft and fleet availability for specific mission parameters
- Developed in the R programming language
 - 100% in house, no proprietary software
 - The free open source R programming language

Market

PM Fleet Management, Improvement project justification, system upgrade projections

Primary data sources

CAST

- DA2410 Component history (installation, removal, repair, overhaul)
- LCF System of record for part information
- ASAP
 - Maintenance downtime estimates based on repair
 - Opportunistic maintenance items
 - Component life estimates for non 2410 tracked items
- Rimfire
 - More accurate removal reason and failure mechanism for select parts

Model (reliability)

- Built from historic maintenance records
 - DA2410 via CAST for tracked items
 - ASAP when possible for non-tracked items
- Distribution is fit for each PN Probability of removal vs. Flight Hours
 - Uses entire history for that PN
 - If sample sizes are too small, combine multiple PNs for the same WUC
 - Causable vs. Non-causable
 - Data is not true failure data, it is removal data, this obfuscates the 'why'
 - User will be provided a few choices on how removals are classified
 - Data will be considered censored or non-censored based on the classification

Model (reliability)

- Tail Number Specific Reliability Assessment
 - Live database connection allows for up to date data
 - Aircraft configuration no two are identical
 - Near current hours on each part
 - Current data in conjunction with reliability function for each part yields up to date reliability assessment
 - Sub-systems, entire aircraft, unit, entire fleet
 - Very little component redundancy from a reliability perspective, simplifies roll up
- Stretch goals
 - Automatically select the best distribution to use
 - Model will compare goodness-of-fit metrics and select the appropriate distribution
 - Model individual removal reasons for parts

Simulation (Availability and Maintainability)

- For each iteration
 - 1. Start with current configuration and current flight hours on each part (initial conditions)
 - 2. Step forward in time add step interval T to flight hours on each part
 - 3. Calculate reliability at new time for each part
 - 4. For each part compare updated reliability to random number to determine if part 'failed'
 - If the part did not 'fail' continue to step forward in time
 - If the part did 'fail'
 - 1. Reset the hours on that part to zero
 - 2. Add the likely downtime for that part to the downtime table
 - 3. Continue to step forward in time
 - 5. Continue to step forward in time until the desired simulated time is reached, this concludes one iteration
 - Iterate a sufficient number of times based on the number of variables and computation time

$$\mathbf{t} = t_{i,j} = \begin{cases} t_{i-1,j} + T, & R_j(t_{i-1,j}) \ge U_{i-1,j} \\ 0, & R_j(t_{i-1,j}) < U_{i-1,j} \end{cases}$$

	0	1	2	3
Part 1	100	110	120	0
Part 2	50	60	0	10
Part 3	250	260	270	280

$$\mathbf{D} = D_{i,j} = \begin{cases} d_j, & R_j(t_{i-1,j}) \ge U_{i-1,j} \\ 0, & R_j(t_{i-1,j}) < U_{i-1,j} \end{cases}$$

	0	1	2	3
Part 1	0	0	0	48
Part 2	0	0	4	0
Part 3	0	0	0	0

Simulation (Availability and Maintainability)

- The simulation outputs a population equal to the number of iterations for each:
 - Accrued downtime over the simulated time
 - Availability
 - Total downtime
 - Components replaced
 - Identify problem components
 - Over the simulation time which parts are most likely to need replacement for that tail number
 - Reliability over time

Summary

- Live connection to data sources
 - Built for continuously changing data
 - Tail number specific analysis
- Model
 - Probabilistic reliability model for each part build from historic records
 - Specific reliability estimates for each part using current flight hours
 - Specific reliability estimates for each tail number using current flight hours and configuration
- Simulation
 - Predictive Monte Carlo simulation
 - Future availability estimates
 - Future downtime estimates
 - Components most likely to require replacement over time simulated

AMRDEC Web Site

www.amrdec.army.mil

Facebook

www.facebook.com/rdecom.amrdec

YouTube

www.youtube.com/user/AMRDEC

Twitter

@usarmyamrdec

Public Affairs

AMRDEC-PAO@amrdec.army.mil