

Siemens – MADe Demonstration

Model Driven Reliability Engineering

Unrestricted © Siemens AG 2018

Realize innovation.

AGENDA

- Introductions
- PHM Introduction
- MADe Overview
- Use Case Walk Thru
- Summary

The Digital Factory business follows a long-term strategy with the systematic expansion of our portfolio

Unrestricted © Siemens AG 2018

PHM Overview

- Siemens became an Equity Partner in PHM Technology as of February 2016
 - PHM Technology
 - Australian Company based in Melbourne
 - Maintenance Aware Design Environment (MADe)
 - 'model-based' engineering tools for the design, safety, reliability and health management of complex systems
 - MADe Modules
 - MADe
 - Safety and Risk Assessment
 - RAM
 - Prognostics and Health Management

MADe Overview - Modules

- Made Modules Overview
 - MADe Module
 - Create the functional block diagram
 - Assign functions to blocks
 - Assign failure diagrams to blocks
 - Observe flow perturbations
 - Observe flow responses

PHM – MADe - Modules

- Made Modules Overview Continued
 - Safety and Risk Assessment Module
 - Entering criticality factors using the Criticality & Reliability Editor Analyzing criticality of the Functional Block Diagram (FBD) system model using:
 - FMEA Reports
 - FMECA Reports
 - Critical Item Analysis editor
 - Analyzing the FBD system model using Functional Fault Tree Analyses (FTA)

PHM – MADe - Modules

- Made Modules Overview Continued
 - RAM Module
 - Enter Reliability data for items/elements in the system model
 - Create Groupings for Availability/Reliability Block Diagram (ABD/RBD) Items
 - Conduct a Reliability analysis on RBD/ABD model
 - Conduct a Functional Fault Tree Analysis

PHM – MADe - Modules

- Made Modules Overview Continued
 - PHM Module
 - Analyzing a Functional Block Diagram (FBD) system to determine sensor test points
 - Modify existing sensor arrangements based on user knowledge or trade-offs
 - Optimizing sensor coverage using Sensor Sets
 - Enter or customize sensor information into a Sensor Library

Demonstration Focus Areas (MADe Module and RAM Module)

Unrestricted © Siemens AG 2018

SIEMENS

MADe Overview Flow

Create a New Project

Create Functional Block Diagram

Create & Assign Failure Diagrams

Assign Criticality

Assign Occurrence, Severity & Detectability

Assign Historical Reliability

SIEMENS

MADe Benefits

Create a New Project	Central Repository for Project Reliability Data
Create Functional Block Diagram	Facilitates organizational input and review
Create & Assign Failure Diagrams	Standard Failure Taxonomy – Consistency and Correctness
Assign Criticality	Integrated FMEA/FMECA
Assign Occurrence, Severity & Detectability	Integrated FMECA
Assign Historical Reliability	More Accurate Predictions

SIEMENS

Use Case Walk Thru

Reliability Allocation

Update Reliability Allocation with FRACAS Data

Reliability Block Diagram

Fault Trees

Use Case Summary and Benefits

Mission Profile	Analyze Mission Effects On System Reliability
FMEA/Software FMEA/Mechanical Fault Injection	Analyze Software Risk As Part Of Overall Mission Risk
Reliability Allocation	Reliability Prediction Based on Same Model Used to Analyze Risk (FMEA/FMECA)
Update Reliability Allocation with FRACAS Data	Leads To More Accurate Reliability Predictions
Reliability Block Diagram	Based on FBD Leading To Consistency Across Artifacts
Fault Trees	Based on FBD Leading To Consistency Across Artifacts

MADe Value

- Standard Failure and Functions Taxonomy Leads to consistency and reuse.
- One tool to perform multiple analysis (RBD, FMEA, Fault Trees)
- Model based Reliability Provides for Better Understanding and Feedback
- MADe is a standalone product that has an available integration with Teamcenter. MADe does not require Teamcenter
- When Used With the Teamcenter Integration connectivity with DVP&R, Requirements, FRACAS(future capability) – Integrated Reliability Environment
- Siemens/PHM willing to work with companies to develop additional capability i.e. Confidence Level in support of DVP&R

Thank you.