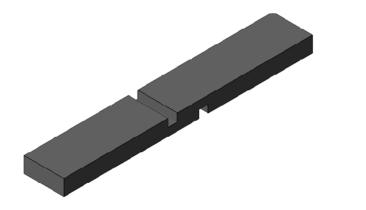
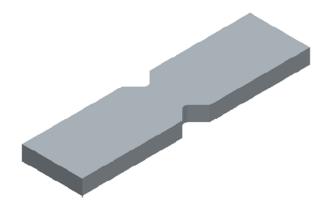
RELIABILITY AND SURVIVABILITY ANALYSIS OF 3D PRINTED FDM PARTS


Mohamed Seif, Ph.D., P.E.


Mechanical Engineering Department Alabama A&M University

Objectives

- Introduce AM to the US Army AMRDEC's S&T program entitled "PRIntable Materials with embedded Electronics (PRIME2)
- Investigate state-of-the-art 3D fabrication capabilities for electronics
- Reduce weaponry size/weight/cost and increase efficiency
- Further investigate 3D Printing of entire PCB (antenna, RF structures, connectors)

Test Specimens and Methods

- In-Plane Shear Test Specimen V-Notch Test Specimen •
- ASTM D3846 Method

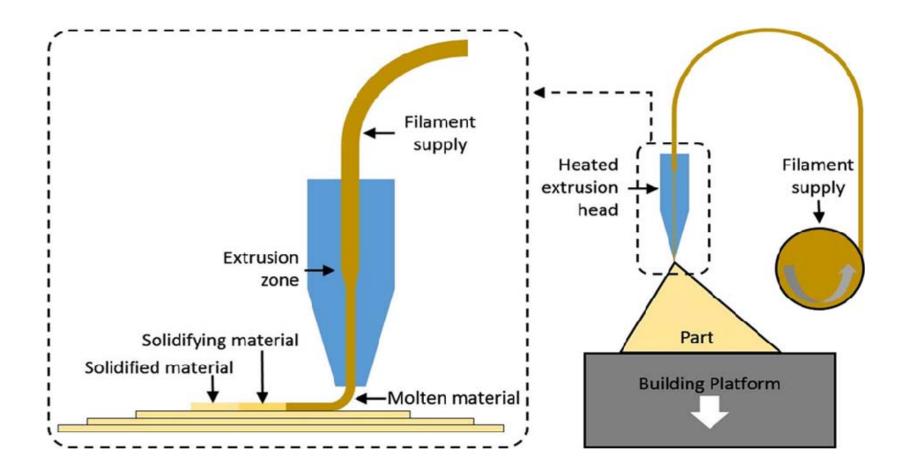
- ASTM D5379/D Method

ASTM D1892 standard has Note: been used for **Extrusion/Forming Sheet process.**

Test Materials

Two different manufacturing processes:

- 1. **3D** Printing process (FDM) using the recommendation of the **3D** Printer manufacturer.
- 2. Conventional Extrusion/Forming Sheet process: The specimens are cut from sheets of plastics, which are prepared using ASTM D1892 standard


Additive Manufacturing Processes

	Additive Manufacturing (AM) Processes													
	55	Laser Based AM Processes												
Process		Laser Melting			Laser Polymerizat	ion	Extrusion Thermal		Material Jetting		Material Adhesion		Electron Beam	
Process	Schematic	Laser sourc Powder bed		Laser sourc Powder supply		Laser source Liquid resin		Material melt in nozzle		Material jetting		Laser Compa cutting	ctor	Electron beam Powder bed
		SLS		DMD		SLA		FDM		3DP		LOM		EBM
	al	SLM		LENS		SGC		Robocasting		IJP		SFP		
Name	Material	DMLS		SLC		LTP				MJM				
2	×			LPD		BIS				BPM				
						HIS				Thermojet				
	Bull	k Material Typ	e	Powder		Liquid		Solid						

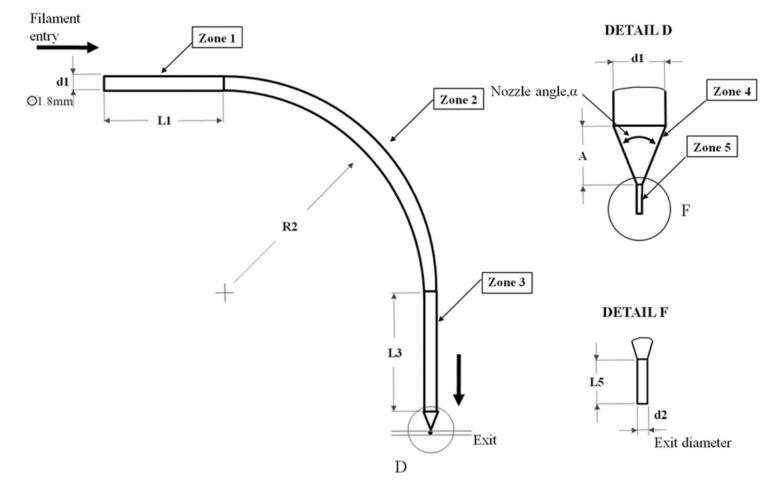

Additive Manufacturing Technique and Basic Elements

Table 4 Additive Manufacturing Technique and Basic Elements					nents					
Am Process		Ν	Ionitored Attr	ibute						
		Lá	aser Power/	Melt Pool	Nozzle	Jet Status	Chamber	Chamber	Platform	Head
		D	istribution	Temperature	Temperature		Temperature	Vacuum	Position	Position
Laser Polym	nerization Proc	cess	X				X	X	X	X
Laser Melting Process			X	X			X	X	X	X
Extrusion Process				X	X		X		X	X
Material Jetting Processes						X	X		X	X
Adhesive Processes							X		X	Х

Modelling Approach - Extrusion processes (FDM)

The Extrusion Process

Sectional view of melt flow channels showing five zones

The Extrusion Processes

* The pressure drop (ΔP) in a capillary rheometer required that a non-Newtonian fluid be driven through a tube of length *l* and radius r is:

where:

 η_{α} Apparent viscosity determined using a capillary rheometer

Q Volumetric flow rate

$$\diamond \Delta P = \Delta P_1 + \Delta P_2 + \Delta P_3 + \Delta P_4 + \Delta P_5$$

Pressure Drop in Every Zone

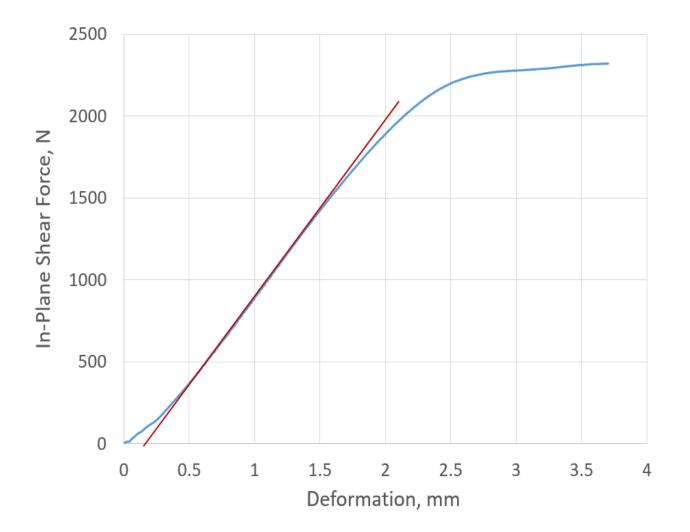
 $\Delta P = \Delta P_1 + \Delta P_2 + \Delta P_3 + \Delta P_4 + \Delta P_5$ where:

$$\Delta P_{1} = 2L_{1} \left(\frac{V}{\phi}\right)^{\frac{1}{m}} \left(\frac{m+3}{r_{1}^{m+1}}\right)^{\frac{1}{m}} \exp\left[\alpha \left(\frac{1}{T-T_{0}} - \frac{1}{T_{\alpha} - T_{0}}\right)\right]$$
$$\Delta P_{2} = 2L_{2} \left(\frac{V}{\phi}\right)^{\frac{1}{m}} \left(\frac{m+3}{r_{1}^{m+1}}\right)^{\frac{1}{m}} \exp\left[\alpha \left(\frac{1}{T-T_{0}} - \frac{1}{T_{\alpha} - T_{0}}\right)\right]$$
$$\Delta P_{3} = 2L_{3} \left(\frac{V}{\phi}\right)^{\frac{1}{m}} \left(\frac{m+3}{r_{1}^{m+1}}\right)^{\frac{1}{m}} \exp\left[\alpha \left(\frac{1}{T-T_{0}} - \frac{1}{T_{\alpha} - T_{0}}\right)\right]$$

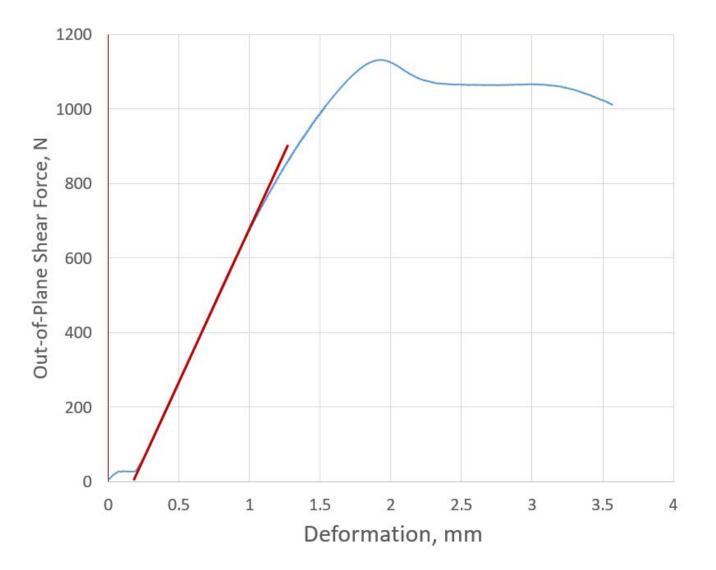
$$\Delta P_4 = \frac{2m}{3\tan\left(\frac{\alpha}{2}\right)} \left(\frac{1}{r_2^{\frac{1}{m}}} - \frac{1}{r_1^{\frac{1}{m}}} \right) \left(\frac{V}{\emptyset} \right)^{\frac{1}{m}} [r_1^2 2^{m+3}(m+3)]^{\frac{1}{m}} \exp\left[\alpha \left(\frac{1}{T - T_0} - \frac{1}{T_\alpha - T_0} \right) \right]$$

Pressure Drop in Every Zone

where:


 $L_1 - L_3$ and L_5 length of respective zones $L_2 = \left(\pi (R_2 + d_1/2)) / 2 \right)$ radius of the channel at zone 2 \mathbf{R}_2 radius of the cylindrical area of the melt flow channel r_1 the exit radius r_2 nozzle angle α Vfilament velocity at the entry fluidity U flow exponent т Tworking temperature

 T_{α} the temperature at which m and u are calculated


3D Printing Conditions of the Filaments

Variables	ABS
Extrusion Temperature	240 °C
Layer Thickness	0.05mm - 0.50mm
Bed Temperature	110 ° C
Chamber Temperature	N/A
Filament Size	3mm
Nozzle Diameter	0.50mm
Infill	100%

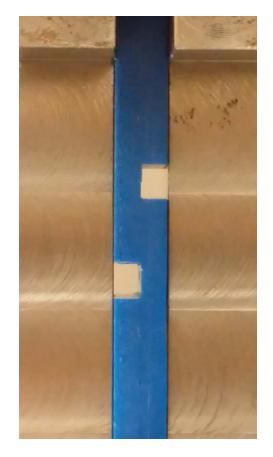
Typical In-Plane Shear Test

Typical V-Notch Shear Test

In-Plane Shear Test Results (3-D Printer)

	ABS – 3	D Printer	HIPS – 3	IPS – 3D Printer PLA – 3D Printer		
Statistical Values	Prop. Limit	In-Plane Shear	Prop. Limit	In-Plane Shear	Prop. Limit	In-Plane Shear
Average	20.2 MPa	32.1 MPa	19.9 MPa	30.4 MPa	29.95 MPa	44.4 MPa
Standard Deviation	0.455 MPa	1.366 MPa	0.297 MPa	0.649 MPa	1.155 MPa	1.354 MPa
Coefficient of Variance	2.25%	4.25 %	1.50 %	2.13 %	3.86 %	3.05 %

V-Notch Shear Test Results (3-D Printer)

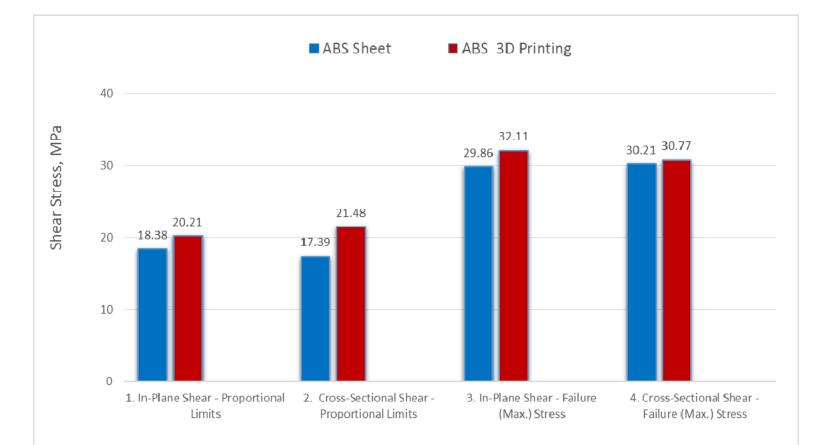

	ABS – 3	D Printer	HIPS – 3	3D Printer PLA – 3D Printe		
Statistical Values	Prop. Limit	In-Plane Shear	Prop. Limit	In-Plane Shear	Prop. Limit	In-Plane Shear
Average	21.5 MPa	30.8 MPa	20.3 MPa	25.1 MPa	34.98 MPa	46.9 MPa
Standard Deviation	0.26 MPa	0.27 MPa	0.65 MPa	0.56 MPa	1.65 MPa	0.59 MPa
Coefficient of Variance	1.2%	0.878 %	3.22 %	2.25 %	4.71 %	1.24 %

Typical In-Plane Shear Test

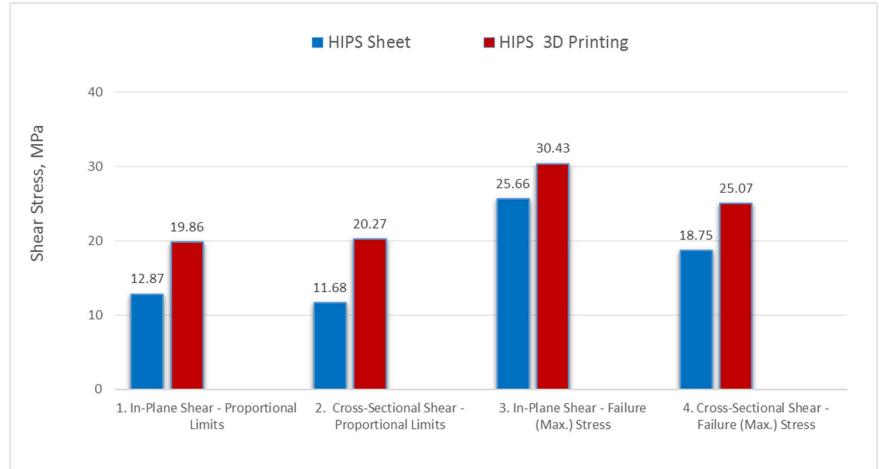
Extrusion/Forming Sheet

3D Printing

Typical V-Notch Shear Test


Extrusion/Forming Sheet

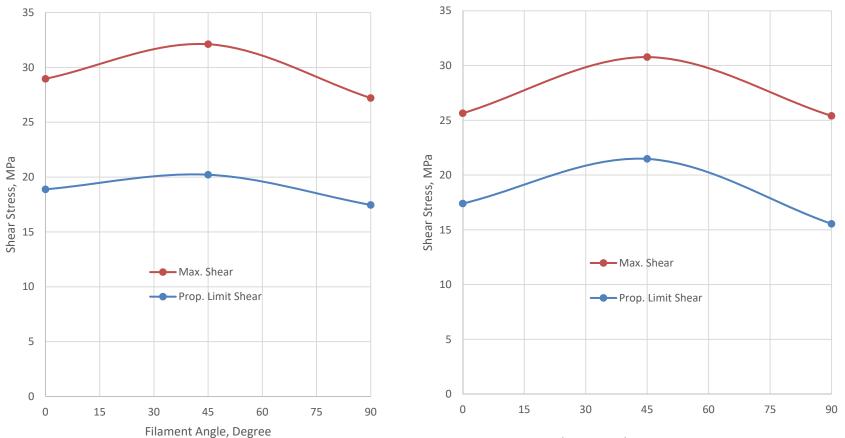
3D Printing



ABS sheets VS ABS 3D Printed (Acrylonitrile Butadiene Styrene – ABS)

NOTE: 3D printed coupons are JUST AS STRONG or STRONGER !!!

HIPS sheets VS HIPS 3D Printed (High Impact Poly-Styrene, i.e., HIPS)

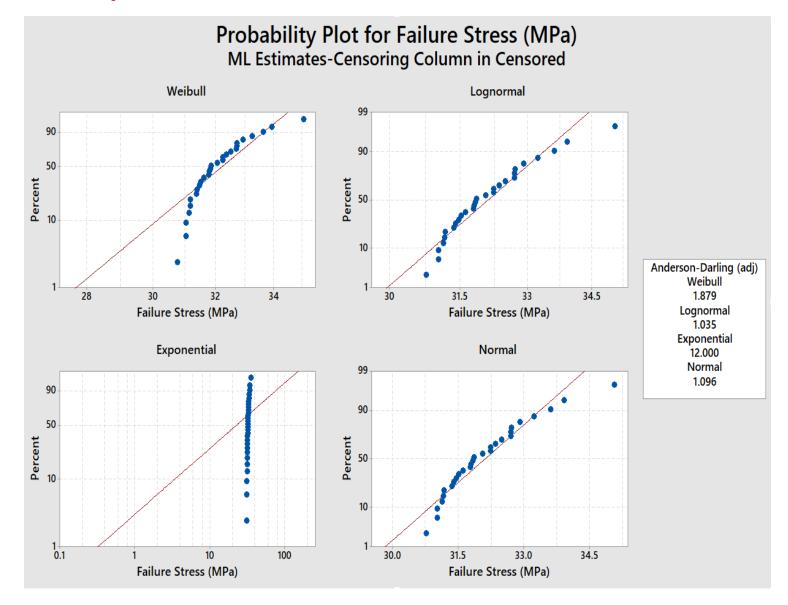


NOTE: 3D printed coupons are JUST AS STRONG or STRONGER !!!

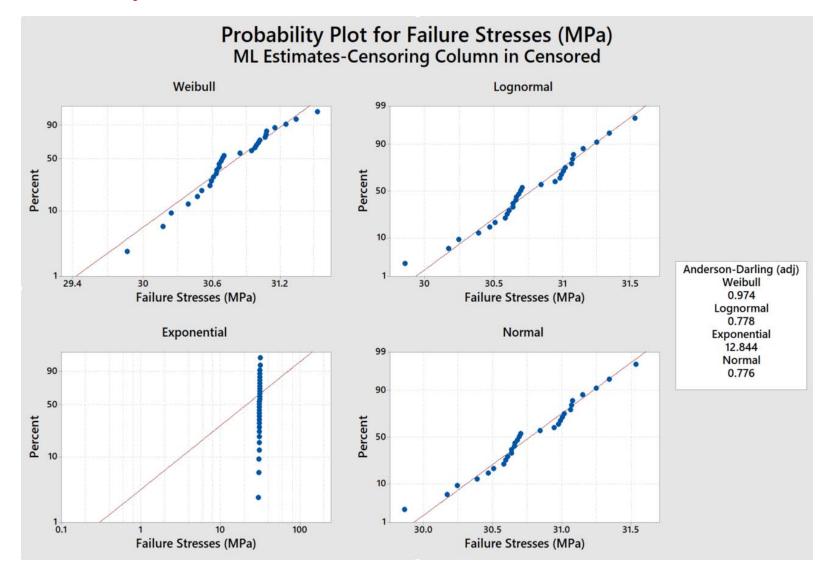
Effect of Filament Orientation

In-Plane Shear

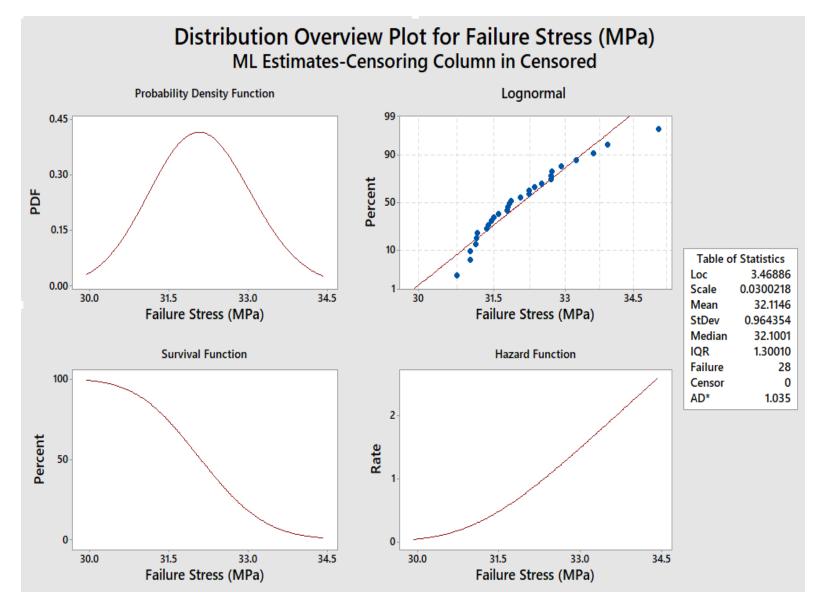
V-Notch Shear

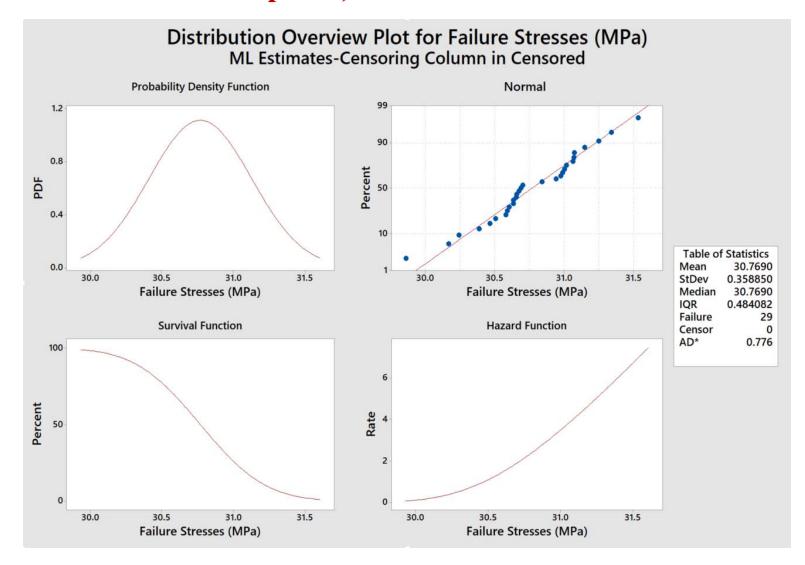

Filament Angle, Degree

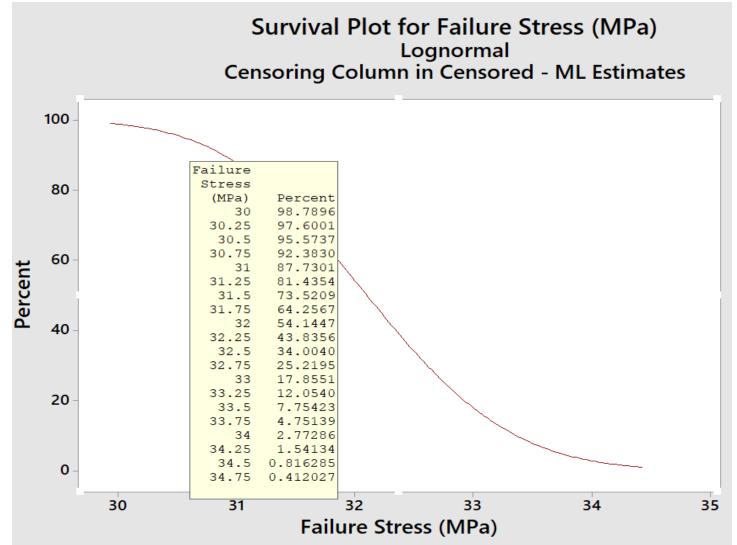
Failure and Quality Assessment Analysis

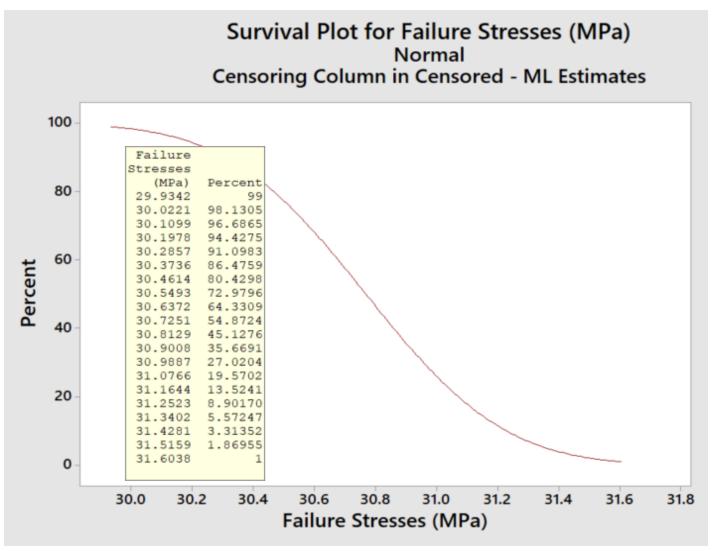

In this work, four distributions have been examined:

- 1. Weibull Distribution
- 2. Lognormal Distribution
- **3. Exponential Distribution**
- 4. Normal Distribution


Probability Plot for Failure Stresses for In-Plane Shear Data


Probability Plot for Failure Stresses for V-Notch Shear Data


Distribution Plot for Failure Stresses for In-Plane Shear Data


Distribution Plot of Failure Stresses for V-Notch (out-ofplane) Shear Data

Survival Probabilities at Different In-Plane Shear Stress Levels

Survival Probabilities at Different Out-of-Plane Shear Stress Levels

Comparison between 3D Printing and Commercial Manufacturing Process

a. The Mann-Whitney Test

Mann-Whitney: 3D, Commercial

Method

η₁: median of 3D η₂: median of Commercial Difference: η₁ - η₂

Descriptive Statistics

Sample	N	Median
3D	26	31.8171
Commercial	26	30.4876

Estimation for Difference

Difference	CI for Di	fference	Achieved Confidence		
1.23197	(0.502332	, 1.90291)	95.09%		
Test					
Null hypoth	esis	H₀: η₁ - ι	$H_0: \eta_1 - \eta_2 = 0$		
Alternative	hypothesis	H ₁ : η ₁ - r	ן₂ ≠ 0		
Method		W-Value	P-Value		
Not adjuste	Not adjusted for ties		0.003		
Adjusted fo	r ties	852.00	0.003		

In-Plane

Mann-Whitney: 3D, Commercial

Method

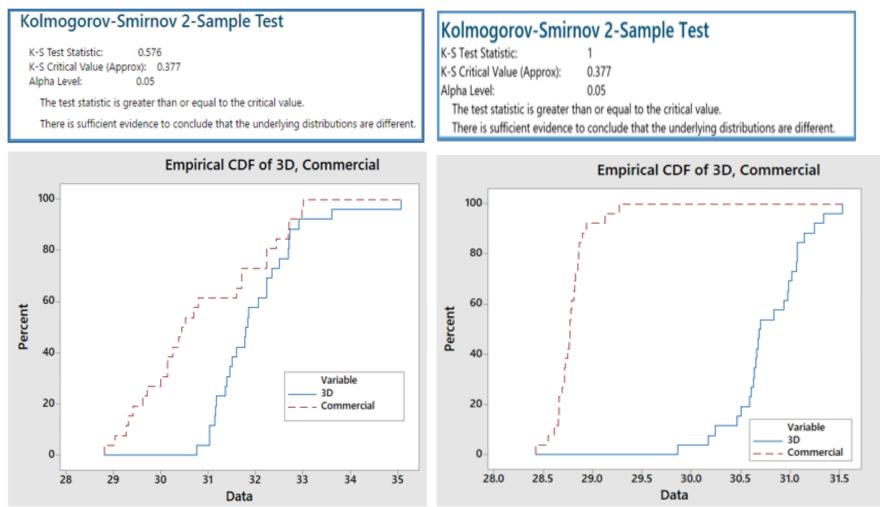
η₁: median of 3D η₂: median of Commercial Difference: η₁ - η₂

Descriptive Statistics

Sample	N	Median
3D	26	30.6959
Commercial	26	28.7706

Estimation for Difference

	CI for	Achieved
Difference	Difference	Confidence
1.98367	(1.85241, 2.20290)	95.09%


Test

 $\begin{array}{ll} \mbox{Null hypothesis} & H_0; \ensuremath{\,\eta_1\ }\ -\ensuremath{\,\eta_2\ }\ =\ 0 \\ \mbox{Alternative hypothesis} & H_1; \ensuremath{\,\eta_1\ }\ -\ensuremath{\,\eta_2\ }\ \neq\ 0 \\ \end{array}$

W-Value P-Value 1027.00 0.000

Out-of-Plane

b. Two sample Kolmogorov-Smirnov normality test

In-Plane

Out-of-Plane

Conclusions

- ✤ The COV never exceeds 5%.
- For In-Plane Shear, the ABS 3D specimens have about 7.54% higher stresses while the HIPS 3D specimens have about 18.6% increase in their shear stresses.
- For Cross-Sectional Shear, the ABS 3D specimens have about 23.5% higher proportional stresses. For HIPS filaments, HIPS 3D specimens have about 73.5 % increase in proportional limits.
- This increase would be attributed to the thermal cycling of the 3D printer process that would increase the material hardness and hence the Shear Stress.
- This study shows that more enhancement could be achieved by optimizing the effect of the different variables that affect the 3D printing process.

Acknowledgements

* This work was supported by US Army AMRDEC WDI

- Contract # W31P4Q-09-A-0021
- **Task Order # 0009**
- Project PRIME2
- Special thanks to Janice C. Booth, Aviation and Missile Research, Development and Engineering Center (AMRDEC) - U.S. Army Research, Development, and Engineering Command
- Special thanks to EngeniusMicro for providing the test specimens

Thank You

