
Five Common Mistakes when
Conducting Software Failure Modes

Effects Analysis

Ann Marie Neufelder
SoftRel, LLC

amneufelder@softrel.com
http://www.softrel.com

© SoftRel, LLC 2019. This presentation may not be reprinted in whole or part without
written permission from amneufelder@softrel.com

mailto:amneufelder@softrel.com

Five Common
Mistakes when
Conducting
Software Failure
Modes Effects
Analysis

• The software FMECA is a powerful tool for
identifying software failure modes but
there are 5 common mistakes that can
derail the effectiveness of the analysis.
• #1 - Software is analyzed as a black box

(and shouldn't be).

• #2 - It's assumed that the software will
work as expected

• #3 - It's conducted far too late in
development life cycle

• #4 - It's conducted at wrong level of
abstraction

• #5 - The most common failure modes
aren't considered

Copyright SoftRel, LLC 2019 2

#1 - Software is
analyzed as a
black box (and
shouldn’t be).

•The single most common mistake is
to analyze the software based on
what it "is" instead of what it "does".

•The black box approach is common
for hardware FMECA.
•However, it doesn't work well for
software.

•Software doesn't wear out - it fails
because the code doesn't perform
the required functions.

•Hence, it must be analyzed from a
functionality versus black box
standpoint.

Copyright SoftRel, LLC 2019 3

#1 - Software is analyzed as a black box (and shouldn’t be).

Examples of “Black box” SFMECA which should be avoided.

Copyright SoftRel, LLC 2019 4

LRU Failure mode Recommendation

Turret
CSCI

CSCI fails to
execute

Doesn’t address states, timing,
missing functionality, wrong data,
faulty error handling, etc.

Turret
CSCI

CSCI fails to
perform
required
function

CSCI performs far too many
features and functions. List each
feature and what can go wrong
instead.

Example of a use case to move a turret analyzed based on what it
does/doesn’t do and not what it is

Copyright SoftRel, LLC 2019 5

Use
Case

Failure mode Root causes

Move
turret

Faulty timing • Turret moves too late
• Turret moves too early

Faulty sequencing
and state
management

• Turret moves inadvertently
• Turret fails to move when commanded

Faulty error
handling

• Turret exceeds the maximum range allowed
• Failures in turret hardware aren’t detected

Faulty processing Turret moves upon startup after an abnormal shutdown

Faulty data • Turret moves to the wrong location because of
improperly formatted, improperly scaled or null data

• Turret comes too close to a hard stop because of
overly tight specifications

• Turret doesn’t move the entire spectrum of possible
radians

Faulty functionality Use case doesn’t meet the system requirements

#2 - It's assumed
that the
software will
work as
expected

• The "software" FMECA focuses on how
the "software" fails.

• Yet many analysts assume that the
software will work perfectly.

• There's no point in doing a "software"
FMECA if you're going to assume that
the software always works.

• One must assume that
1) Unwritten assumptions will lead to
failures
2) If an important detail isn't in writing it
won't get coded or tested
3) If the requirements don't discuss fault
handling the software won't handle
faults
4) even when the requirements are
complete, the code may not be written
to meet the requirements.

Copyright SoftRel, LLC 2019 6

Example: Unwritten assumptions in the software
requirements leading to a failure

Satellite is lost at a cost of $186 million.

Engine continues to operate until fuel is
consumed

First stage of launch on 10/8/05 is successful.
Second stage stops performing when required
command to cut off main engine doesn’t occur.

SRS specifications missing requirement for main
engine cutoff

Copyright SoftRel, LLC 2019

European
Space
Agency
CryoSat-1

Example: Important details missing from requirements
won’t get coded or tested

This is the specification for the logging feature:

1) The software shall log all warnings, failures and successful missions.

2) At least 8 hours of operation shall be captured

3) Logging to an SD card shall be supported in addition to logging to the
computer drive

This is what you know about the software organization and software itself

1) Logging function will be called from nearly every use case since nearly every
use case checks for warnings, failures and successes

2) Testing will cover the requirements. But no plans to cover stress testing,
endurance testing, path testing, fault insertion testing.

3) Software engineers have discretion to test their code as they see fit.

4) There is a coding standard but there is no enforcement of it through
automated tools and code reviews only cover a fraction of the code

Example: Important details missing from requirements won’t get coded
or tested

• These are the faults that can/will fall through the cracks
• No checking of read/write errors, file open, file exist errors which are common

• No rollover of log files once drive is full (may be beyond 8 hours)

• No checking of SD card (not present, not working)

• Logging when heavy usage versus light or normal usage (might take less than 8 hours
to fill drive if heavy usage)

• This is why these faults aren’t found prior to operation
• No one is required to explicitly test these faults

• No one is required to review the code for this fault checking

• No one is required to test beyond 8 hours of operation

• This is the effect if any of these faults happens
• Entire system is down because it crashes on nearly every function once drive is full, SD

card removed, file is open or read/write errors

• With the SFMEA you cannot assume that best practices will be followed unless
there is a means to guarantee that. Even when that’s the case the root cause
should be tracked.

Example: If the requirements don't discuss fault handling

the software won't handle faults

• This state diagram based on the written software requirements, doesn’t
have a faulty state or transitions to/from a faulty state

• Hence, these faults are unlikely to be handled in design, code or test plan

• The SFMECA should not assume otherwise

Copyright SoftRel, LLC 2019 10

Initialization

Ready

Prepare for
launch

Launch

Fails to account for initialization failures in
HW, SW

Fails to account for failures in
launch preparation

Fails to account for launch
failures such as hang fire,
misfire, etc

Example: Even when the requirements are complete, the
code may not be written to meet the requirements

Cost = $18.5 million of 1962 dollars.

Rocket destroyed 293 seconds after liftoff.

Faulty corrections sent the rocket off course.

Without the smoothing function the software
treated normal variations in velocity as if they
were serious.

The requirements document clearly indicated an
overbar which was supposed to be an averaging
function of velocity. However, the programmer
ignored the superscript when transcribing the
formula into code.

Copyright SoftRel, LLC 2019

Mariner 1 rocket failure in 1962.
[Mariner]

#3 It's conducted
far too late in the
development life
cycle

• The perfect time to conduct a software FMECA
is immediately after the first pass of the
software requirements/use cases and before
the code is written to those requirements.

• Typically the first pass of the SRS and use cases
is when the "shalls" are defined.

• In the second pass is when the "shall nots" or
alternative flows should be defined.

• The SFMECA can be used to strengthen the
requirements and can even be used as a
requirements review tool.

• If SFMECA is conducted after code is written
• Less effective but still time to effect test

procedures

• If SFMECA is conducted after testing is finished
• Significantly less effective – can only effect

user training or next release of software
Copyright SoftRel, LLC 2019 12

#4 It's conducted
at the wrong level
of abstraction

• Some analysts work through the code
one line at a time and analyze how that
single line of code could fail.

• For software functions that are associated
with particularly high hazards that may be
appropriate but not necessarily sufficient.

• When analyzing one line of code at a time
the analyst misses the failure modes due
to
• 1) required code is missing altogether

• 2) defects that are caused by more than
one line of code.

• Effective software FMECAs focus on the
requirements, use cases, interfaces,
detailed design and usability.

Copyright SoftRel, LLC 2019 13

Focusing at too high or too level a level of abstraction

Copyright SoftRel, LLC 2019

System
requirements

Software
requirements

Software interface design

Software design – state diagrams,
timing diagrams, sequence diagrams,

DB design, GUI design

Module and class design

Line of code

Functions, procedures (code)

Not enough
coverage across

the software
and not enough

coverage of
design or

software only
requirements

Analyzing one
line of code at

a time has
potential to

miss the
design and

requirements
related faults

What to focus on and when

FMEA Viewpoints
Level of architecture
applicable for
viewpoint

Failure Modes When focusing on this is
most effective

The use cases, system
and software
requirements

The system does not do
it’s required function or
does the wrong function

New requirements or new
system. Major changes to
an existing system.

The interface design The system components
aren’t synchronized or
compatible

Many components
developed by more than
one organization.

The detailed design or
code

The design and/or code
isn’t implemented to the
requirements or design

When there is detailed
logic or algorithms that
are mission critical – i.e.
launch calculator.

The ability for the
software to be
consistent and user
friendly

The end user causes a
system failure because of
the software interface

When the user can cause a
failure or when lack of
usability can cause a
mission failure

Use cases are highly recommended
•Use cases have been proven to reduce software defects

because they “visualize” the software requirements in
terms of sequence, timing, and data
• Software engineers can visualize how the software works better

with use cases then with only a list of text software requirements

•Use cases also increase software FMEA effectiveness
• Software FMEA analysts can visualize what can go wrong faster with

use cases then with only a list of text software requirements

• Failure modes that span across the requirements easier to identify

• Failure modes related to missing level of detail easier to identify

• Failure modes related to faulty error handling easier to identify

• Failure modes related to sequence easier to identify

• Failure modes related to flow of data easier to identify

11/18/2019

SFMEAs are most effective when boundary
determined in advance of analysis
• Example – a System of System is comprised of several elements

• System of system level SFMEA would focus on all of the above elements
interfacing with each other

• Element level SFMEA would focus on just one of these elements

• Component level would focus on a part of one element such as the turret
in a missile launcher

11/18/2019

#5 The most
common failure
modes aren't
considered

• The most common failure modes that apply to
all software intensive systems are:
• Faulty functionality - missing required

functionality, function doesn't work as
required

• Faulty processing - can't perform after an
interruption of service or extended usage

• Faulty error handling - doesn't
handle hardware, interfaces, software or
user faults

• Faulty state management - executes when it
shouldn't, encounters dead states, faulty
state transitions, etc.

• Faulty timing - race conditions, a function
executes too early, too late, accumulates
timing errors when left on too long, etc.

• Faulty data isn’t handled - missing, corrupt,
improperly sized, improperly formatted,
improperly scaled data isn't handledCopyright SoftRel, LLC 2019 18

Tip: The most
common
failure
modes/root
causes are
related to
weakest link
of
development

Copyright SoftRel, LLC 2019 19

Weak development area Common
failure
modes/root
causes

Design is conducted after code is
written or is too high level. No logic
diagrams when needed.

Faulty logic

Requirements/Design/Use cases
doesn’t describe detailed state
transitions, faulty states, prohibited
states

Faulty state
management

Requirements/Design/Use cases
doesn’t cover error handling,
alternative flows

Faulty error
handling

Requirements/Design/Use cases don’t
cover data definitions or interface data

Faulty data not
handled

Requirements are too high level Faulty
functionality

No timing diagrams on timing sensitive
software

Faulty timing

Tip: Identify software related failure
modes by working backwards

11/18/2019

Element level events Software Related Failure mode

Missile misfires  Faulty processing - Software aborts during

specific points of missile releaseMissile hang fires

Missile misses target

trajectory

 Faulty timing - Missile launches too early or too

late

 Faulty data - Launch calculator can’t handle

faulty data

 Faulty algorithm in launch calculator

Missile fails to launch when

commanded

 Faulty state transitions with missile launching

software

Missile launches when not

commanded

Turret moves when not

commanded

 Faulty state transitions with turret movement

Tip:
Identify
software
related
root
causes by
working
backwards

11/18/2019

Failure mode Root causes

Faulty processing

- Software aborts

during specific

points of missile

release

Software crashes, computer is

shut down or loses power, end

user aborts mission

Missile launches

too early

Missile launches

too late

Response parameters are too

short

Response time parameters are

too long

Software processing is sluggish

Software built up time

inaccuracy

Launch calculator

can’t handle

faulty data

Calculator has incorrect

specification for algorithm

Launch calculator

has faulty

algorithm

Calculator has correct

specification for algorithm but

incorrect implementation

Tip:
Identify
software
related
root
causes by
working
backwards

11/18/2019

Failure mode Root causes

Faulty state

transitions with

missile launching

software

• Launch software is

missing code for

specified state

transition

• Launch software is

missing a required

state transition in

specifications

Faulty state

transitions with

missile launching

software

Launch software doesn’t

check for required launch

conditions prior to launch

Faulty state

transitions with

turret movement

Software doesn’t stow

when commanded or

doesn’t stow when it

should

Just a few
examples
of failure
modes that
causes
major
failure
events

Copyright SoftRel, LLC 2019

Failure Event Associated failure mode

Several patients suffered
radiation overdose from the
Therac 25 equipment in the mid-
1980s. [THERAC]

Faulty timing - A race condition combined
with ambiguous error messages and
missing hardware overrides.

AT&T long distance service was
down for 9 hours in January
1991. [AT&T]

Faulty sequencing - An improperly placed
“break” statement was introduced into the
code while making another change.

Ariane 5 Explosion in 1996.
[ARIAN5]

Faulty data - An unhandled mismatch
between 64 bit and 16 bit format.

Faulty error handling – One size fits all
reboot

NASA Mars Climate Orbiter
crash in 1999.[MARS]

Faulty data - Metric/English unit mismatch.
Mars Climate Orbiter was written to take
thrust instructions using the metric unit
Newton (N), while the software on the
ground that generated those instructions
used the Imperial measure pound-force
(lbf).

On October 8th, 2005, The
European Space Agency's
CryoSat-1 satellite was lost shortly
after launching. [CRYOSAT]

Faulty functionality - Flight Control System
code was missing a required command
from the on-board flight control system to
the main engine.

A rail car fire in a major
underground metro system in
April 2007. [RAILCAR]

Faulty error handling - Missing error
detection and recovery by the software.

Number 6-10 on common causes for ineffective
SFMEA

6. Not following up with the root-causes and
mitigations identified

7. Assigning the analysis to a person who doesn’t have
experience with software development

8. Too much time spent on analyzing the
probability/frequency when analyzing controls is
what’s important

9. Assigning the analysis to exactly one person
10.Trying to apply the SFMEA to everything or picking

an arbitrary starting point

Copyright SoftRel, LLC 2019 24

Additional references

• Effective Application of Software Failure Modes Effects
Analysis
• This book provides practical guidance and examples for conducting

effective software FMECAs.

• If you want to learn more- attend the Software Reliability
Bootcamp in Huntsville, AL January 28th-30th

Copyright SoftRel, LLC 2019 25

https://softrelllc.cmail19.com/t/d-l-pldukil-jykktlchr-t/

