MECHANICAL RELIABILITY PREDICTION METHODS FOR SOLID ROCKET MOTORS AND OTHER ORDNANCE

Russ Alexander <spectrum.russ@comcast.net>

What is a Reliability Prediction? (and what it is not)

A reliability prediction is a <u>relative</u> measure of the <u>inherent</u> reliability of the system design

A reliability prediction is NOT an estimate of the expected reliability of the system

BASIC PREDICTION METHODS FOR MECHANICAL* COMPONENTS

Method I - Parts Count (NPRD-16) Method II - Parts Stress (NSWC -11) Method III - Physics of Failure

*MIL-HDBK-217FN2 is used for electrical components

Typical Solid Rocket Motor Design has ~ 50-100 parts

- Includes Propellant(s) and BKNO3 "chemical" parts
- Does not include Ignition Safety Device "electrical" parts
- Usually there are no redundant mechanical parts

Typical Solid Rocket Motor Operation Environments

Ground Benign (GB) / Ground Fixed (GF)

Ground Mobile (GM)

Missile Launch (ML)

Missile Free Flight (MF)

Canon Launch (CL) (for other ordnance)

Method I – Parts Count

RELIABILITY DATABOOK SERIES failure data for a wide variety of component types

Method I

Approach

- Identify Parts from Current Design
- Obtain Failure Rate for Each Part (or Part Type)
- Adjust Failure Rates for Operational Environment
- Sum Adjusted Failure Rates (by Operational Environment)
- Use Exponential Distribution to get Predicted Reliabilities for Each Mission Phase

Example Mission Profile

Operations (GM) -> 15 minutes Launch (ML) -> 5 seconds Free Flight (MF) -> 180 seconds

 $R(t) = R_{opns} \times R_{ML} \times R_{MF}$

Sample O-Ring Failure Rate Data from NPRD-16

Part Description	Quality Level	App. Env.	Data Source	F	ail Per 6 Units	Total Failed	Op. Hours/ Miles(M)/ Cycles(C)(E6)	Detail Page
O-Ring (continued)	Military	ARW	221011-000	<	0.116104	0	8.612982	10453
0-Ring			221012-000 221013-000	< <	0.123432 0.133012	0	8.101656 7.518114	10458 10462
		AUA	221014-000	<	0.154961 4.376886	0	6.453234	10466
			221001-000		2.165149	1	0.461862	10470
			221005-000 221005-000		10.898232 2.990609	5	0.458790 0.334380	10470 10471
		N	221015-000	<	19.254755 0.138150	0	7.238532	10471
			221016-000 221017-000	<	0.194832 0.234903	0	5.132640 4.257072	10487 10503
			221013-000 221019-000 221020-000 800105-000 800106-000 800107-000	~ ~ ~	0.164783 0.273730 1.743229 5.856594 30.705882 33.243521	0 0 2528 71699 127592	6.068592 3.653232 0.573648 431.650198 2335.024896 3838.101302	10519 10535 10551 10567 10629 10700
	Unknown	GM	800108-000		23.187082 2.272727 0.261298M 2.272727 0.261298M	142219	6133.544484	10770
			27024-000 27030-000		0.261298M	473	0.440000 1810.191368M	10841 10841
O-Ring,Case Sealing	Military	AC	800119-000 800120-000 800122-000 800122-000 800123-000 800124-000 800125-000	~ ~ ~ ~ ~ ~ ~ ~ ~	0.087070 0.935097 0.869789 0.788268 0.722637 0.783404 0.830096 0.915808	0 0 0 0 0	1.069408 1.149704 1.268604 1.383820 1.276480 1.204680 1.091932	10841 10842 10842 10842 10842 10842
			800126-000 800127-000 800128-000	~ ~ ~	0.943881 0.997725 1.021860	0 0 0	1.059456 1.002280 0.978608	10842 10842 10842
O-Ring,Common	Military	ARW		<	4.289581	>		
			221008-000 221008-000 221009-000 221010-000 221011-000 221012-000 221013-000 221014-000	~ ~ ~ ~ ~ ~ ~ ~ ~	37.194079 37.170576 39.215686 36.919442 35.527765 37.770056 40.701697 47.418085	0 0 0 0 0 0 0 0 0	0.026467 0.026886 0.026903 0.025500 0.027086 0.028147 0.026476 0.024569 0.021089	10842 10842 10842 10842 10842 10842 10842 10842 10842

What's Missing?

Table 1 is an update to Table 6.3.3-2 "Environmental Conversion Factors" in the RAC publication "Reliability Toolkit: Commercial Practices Edition".

	1											
To From	217 ⇒	GB	GF	GM	NS	NU	AIG	AIF	AUC	AUF	ARW	SF
217 ↓	SD-18 ∛⇒	Protected	-	-	Normal	Severe	Normal	-	Severe	Severe	Severe	-
GB	Protected	Х	0.5	0.2	0.3	0.1	0.3	0.2	0.1	0.1	0.1	1.1
GF	-	2.0	Х	0.4	0.6	0.3	0.6	0.4	0.2	0.1	0.2	2.0
GM	-	5.0	2.5	х	1.4	0.7	1.4	0.9	0.6	0.3	0.5	5.0
NS	Normal	3.3	1.7	0.7	Х	0.5	1.0	0.7	0.4	0.2	0.3	3.3
NU	Severe	10.0	3.3	1.4	2.0	Х	2.0	1.4	0.9	0.5	0.7	10.0
AIC	Normal	3.3	1.7	0.7	1.0	0.5	Х	0.7	0.4	0.2	0.3	3.3
AIF	-	5.0	2.5	1.1	1.4	0.7	1.4	Х	0.6	0.4	0.5	5.0
AUC	Severe	10.0	5.0	1.7	2.5	1.1	2.5	1.7	Х	0.6	0.8	10.0
AUF	Severe	10.0	10.0	3.3	5.0	2.0	5.0	2.5	1.7	Х	1.4	10.0
ARW	Severe	10.0	5.0	2.0	3.3	1.4	3.3	2.0	1.3	0.7	Х	10.0
SF	-	0.9	0.5	0.2	0.3	0.1	0.3	0.2	0.1	0.1	0.1	Х

Table 1. Environmental Conversion Factors

CAUTION: It is not valid to apply to these conversions to Mean Time Between Critical Failures (MTBCF) as reliability modeling must be performed.

The primary environmental symbols used in Table 1 represent the environments defined in MIL-HDBK-217F and they are shown in Table 2. The secondary terms in Table 1 represent the environments in the Navy document SD-18 "Part Requirement and Application Guide" these environments are described in Table 3.

No ML or MF or CL

Conversion FR Factors for SRM and Ordnance

GF (Baseli	ne) = 1.0
GM	= 2.5
ML	= 50
MF	= 25
CL	= 200

Failure Rate for O-Ring from NPRD-16 = 4.289581 (ARW)

Using Conversion Table from Previous Slide and above factors

O-Ring Failure Rate = 0.8579162 (GF) ARWx0.2 = 2.1447905 (GM) = 42.89581 (ML) = 21.447905 (MF)

Method I – Parts Count

Pros: Ease of use

Can be performed relatively quickly Short mission times for SRM make predictions robust to individual part changes Doesn't require detailed knowledge of operating conditions

Cons: High variability in NPRD-16 Failure Data for same part description Custom parts not in NPRD-16

Handbook of Reliability Prediction Procedures for Mechanical Equipment

Logistics Technology Support

CARDEROCKDIV, NSWC-11 May 2011

Approved for Public Release; Distribution is Unlimited

Method II – Parts Stress

Method II

Approach

- Identify Parts from Current Design
- Obtain Material Characteristics and Operating Conditions for Each Part (or Part Type)
- Calculate Failure Rate for Most Extreme Condition (i.e., ML) using NSWC-11 for Each Part
- Calculate or Adjust Failure Rates for Lesser Operational Environments
- Sum Adjusted Failure Rates (by Operational Environment)
- Use Exponential Distribution to get Predicted Reliabilities

Sample O-Ring Failure Rate Model from NSWC-11

3.2.3 Failure Rate Model for Gaskets and Static Seals

By normalizing the equation to those values for which historical failure rate data from the Navy Maintenance and Material Management (3-M) system are available, the following model can be derived:

$$\lambda_{SE} = \lambda_{SE,B} \bullet C_F \bullet C_Q \bullet C_{DL} \bullet C_H \bullet C_F \bullet C_V \bullet C_T \bullet C_N$$
(3-7)

Where:

 λ_{SE} = Failure rate of a seal in failures/million hours

- $\lambda_{SE,B}$ = Base failure rate of seal, 2.4 failures/million hours
 - C_P = Multiplying factor which considers the effect of fluid pressure on the base failure rate (Figure 3.10)

Seals and Gaskets

3-8

Revision G

(C _Q =	Multiplying factor which considers the effect of allowable leakage on the base failure rate (See Figure 3.11)
C	DL =	Multiplying factor which considers the effect of seal size on the base failure rate (See Figure 3.12 for seals or Figure 3.13 for gaskets)
0	C _H =	Multiplying factor which considers the effect of contact stress and seal hardness on the base failure rate (See Figure 3.14)
	C _F =	Multiplying factor which considers the effect of seat smoothness on the base failure rate (See Figure 3.15)
(C _V =	Multiplying factor which considers the effect of fluid viscosity on the base failure rate (See Table 3-3)
0	$C_T =$	Multiplying factor which considers the effect of temperature on the base failure rate (See Figure 3.16)
0	C _N =	Multiplying factor which considers the effect of contaminants on the base failure rate (See Table 3-4)

For $P_S \leq 1500 \text{ lbs/in}^2$, $C_p = 0.25$

For P_s > 1500 lbs/in²,
$$C_P = \left(\frac{P_s}{3000}\right)^2$$
 Ps ~ 1500 psi
 $C_p = 0.25$

Where $P_S = P_I - P_2$ (upstream – downstream pressure)

For Leakage > $0.03 \text{ in}^3/\text{min}$, $C_Q = 0.055/Q_f$

For Leakage \leq 0.03 in³/min, C_Q = 4.2 - (79 Q_f)

Leakage = 0C_Q = 4.2

$$C_{DL} = 1.1 D_{SL} + 0.32$$

Where: D_{SL} = Inner diameter of seal

Assume 4 in. l.D. C_{DL} = 4.72

$$C_H = \left(\frac{M/C}{0.55}\right)^{4.3}$$

Where: M = Meyer Hardness, lbs/in²

 $C = \text{Contact Pressure, Ibs/in}^2$

For $f \le 15 \,\mu\text{in}$, $C_f = 0.25$ For $f \ge 15 \,\mu\text{in}$, $C_f = \frac{f^{1.65}}{353}$ $f = 32 \,\mu\text{in}$ $C_f = 0.862$

Where: f =Surface Finish, µin RMS

	Cv											
FLUID		Fluid Temperature, °F										
	-50	0	50	100	150	200	250	300	350			
Air	554.0	503.4	462.9	430.1	402.6	379.4	359.5					
Oxygen	504.6	457.8	420.6	390.2	365.9	343.6	325.3					
Nitrogen	580.0	528.0	486.5	452.6	424.3	400.0	379.6					
Carbon Dioxide		599.9	510.7	449.7	395.9	352.1						
Water			6.309	12.15	19.43	27.30						
SAE 10 Oil			0.060	0.250	0.750	1.690	2.650					
SAE 20 Oil			0.0314	0.167	0.492	1.183	2.213	2.861	5.204			
SAE 30 Oil			0.0297	0.1129	0.3519	0.8511	1.768	2.861	4.309			
SAE 40 Oil			0.0122	0.0534	0.2462	0.6718	1.325	2.221	3.387			
SAE 50 Oil			0.0037	0.0326	0.1251	0.3986	0.8509	1.657	2.654			
SAE 90 Oil			0.0012	0.0189	0.0973	0.3322	0.7855	1.515	2.591			
Diesel Fuel	0.1617	0.7492	2.089	3.847	6.228	9.169	12.78	16.31				
MIL-H-83282	0.0031	0.0432	0.2137	0.6643	1.421	2.585	4.063	0.6114	0.7766			
MIL-H-5606	0.0188	0.0951	0.2829	0.6228	1.108	1.783	2.719	3.628	4.880			

--- Data for these temperatures determined to be unreliable

$$C_{\mathcal{V}} = \left(\frac{\mathcal{V}_o}{\mathcal{V}}\right)$$

V = 2.28E-10 C_v = 87.72

Where: $\nu_0 = 2 \times 10^{-8} \text{ lbf-min/in}^2$

 ν = Dynamic viscosity of fluid being used, lbf-min/in²

$$C_{T} = \frac{I}{2^{t}} \qquad T_{R} = 250F$$

Where: $t = \frac{(T_{R} - T_{O})}{18}$ for $(T_{R} - T_{O}) \le 40^{\circ}F$
 $T_{O} = 150F$
 $C_{T} = 0.21$

and: $C_T = 0.21$ for $(T_R - T_0) > 40 \,^{\circ}F$

 T_R = Rated Temperature of Seal, °F (See Table 3-6) T_0 = Operating Temperature of Seal, °F

TYPICAL QUANTITIES OF PARTICLES PRODUCED BY HYDRAULIC COMPONENTS	PARTICLE MATERIAL	NUMBER PARTICLES UNDER 10 MICRON PER HOUR PER RATED GPM (N10)				
Piston Pump	steel	0.017				
Gear Pump	steel	0.019				
Vane Pump	steel	0.006				
Cylinder	steel	0.008				
Sliding action valve	steel	0.0004				
Hose	rubber	0.0013				

$$C_N = \left(\frac{C_0}{C_{10}}\right)^3 \bullet FR \bullet N_{10}$$

N/A Assume C_N = 1.0

Where: C_o = System filter size in microns

- C_{10} = Standard system filter size = 10 micron
- FR = Rated flow rate, GPM

 N_{l0} = Particle size factor

Table 3-5. T_R Values for Typical Seal Materials (Reference 27)

SEAL MATERIAL	<i>T_R</i> (^o F)
Natural rubber	160
Ethylene propylene	250
Neoprene	250
Nitrile	250
Polyacrylate	300
Fluorosilicon	450
Fluorocarbon	475
Silicon rubbers	450
Butyl rubber	250
Urethane	210
Fluroelastomers	500
Fluroplastics	500
Leather	200
Impregnated poromeric material	250

 $\lambda_{SE} = \lambda_{SE,B} \times C_P \times C_Q \times C_{DL} \times C_H \times C_F \times C_V \times C_T = 108.413$ FPMH

For ML environment (4in. O-ring made of EDPM)

Either repeat process for conditions of GF,GM and MF or Use conversion factors for Parts Count Method.

RELIABILITY PREDICTION PROCEDURES FOR MECHANICAL EQUIPMENT CARDEROCKDIV, NSWC-11

- CHAPTER 1 INTRODUCTION
- CHAPTER 2 DEFINITIONS
- CHAPTER 3 SEALS AND GASKETS
- CHAPTER 4 SPRINGS
- CHAPTER 5 SOLENOIDS, CONTACTORS
- CHAPTER 6 VALVE ASSEMBLIES
- CHAPTER 7 BEARINGS
- CHAPTER 8 GEARS AND SPLINES
- CHAPTER 9 ACTUATORS
- CHAPTER 10 PUMPS
- CHAPTER 11 FLUID FILTERS
- CHAPTER 12 BRAKES AND CLUTCHES
- CHAPTER 13 COMPRESSORS
- CHAPTER 14 ELECTRIC MOTORS
- CHAPTER 15 ACCUMULATORS, RESERVOIRS
- CHAPTER 16 THREADED FASTENERS
- CHAPTER 17 MECHANICAL COUPLINGS
- CHAPTER 18 SLIDER CRANK MECHANISMS
- CHAPTER 19 SENSORS AND TRANSDUCERS
- CHAPTER 20 SHAFTS
- CHAPTER 21 BELT AND CHAIN DRIVES
- CHAPTER 22 FLUID CONDUCTORS
- CHAPTER 23 MISCELLANEOUS PARTS
- CHAPTER 24 DESIGN ANALYSIS OF EQUIPMENT AVAILABILITY
- CHAPTER 25 REFERENCES

INDEX

Pros:

More realistic prediction than parts count method Considers environmental stresses on individual parts

Cons:

Requires detail knowledge of operational stresses Requires detail knowledge of part/process characteristics Can be time consuming Limited number of part categories in NSWC-11 compared to NPRD-16

- Need detailed knowledge of environmental stresses on each part
- Need detailed technical data for each part (strength, etc)

- Pro: Usually provides the most realistic reliability prediction for mechanical parts
- Cons: Difficult to obtain the necessary information / data Time consuming

What about Chemical "Parts"?

NPRD-16 contains failure rate data for initiators and igniters

Approach

Failure rate for exploding foil = FR(initiator) – Σ FR(hardware)

Failure rate for igniter pellets (BKNO3) = FR(igniter) – Σ FR(hardware)

Failure rate for main propellant more difficult

Part Description	Quality Ap Level En	p. Da v. So	ta urce	Fail E E6 Un	Per its	Total Failed	Miles () Cycles (()/ Detail (C)(E6) Page	
Initiator,Cartridge Actuated (continued)	Military AA	80	0102-000	173	418887	26	0.	149926 9440	
Initiator,Cartridge Actuated		80 80	0103-000 0104-000	348 50	615405 464271	53 8	0. 0.	152030 9440 158528 9440	
	~1	22 22 22 22 22 22	1001-000 1002-000 1003-000 1004-000 1005-000	124 < 12 < 13 < 13 < 17	. 362476 . 342539 . 990893 . 180614 . 077879 . 943657	10 0 0 0	0. 0. 0. 0.	080423 9440 076977 9440 075869 9440 075465 9440 055730 9440	
Initiator,Propellant	Military AA	80 80 80 22 22 22 22 22 22 22	0101-000 0102-000 0103-000 0104-000 1001-000 1002-000 1003-000 1005-000	39 85 1884 13 171 12 10 12 52 52 < 13 < 17	.411872 .813194 .061928 .339914 .018878 .818088 .949640 .434254 .990893 .722456 .077879 .943657	138 1 13 2 0 4 0 0		073246 9440 074963 9441 076015 9441 079264 9441 076977 9441 075669 9441 075665 9441 055730 9441	
Taitistar Accombly Canony Cround Emergency Balasca	Wilitary AA			- 1	40.40 70				
Part Description	Quality Level	A E	op. Data iv. Sourc	ce	Fail E6 Un	Per its	Total Failed	Op. Hours/ Miles(M)/ Cycles(C)(E6)	Detail Page
Igniter,Explosive,Solid Propellant (continued)	Militar	у —	NPRD	116	< 0	. 58 34 31	0	1,714000	9327
Igniter,Explosive,Solid Propellant	Unknown	G	14182	2-001	0	. 534000	<u> </u>		9327
Igniter,Explosive,Squib	Militar Unknown	y D G	DR NPRD	-110	< 0	.192003 .581734 .504257 .533000	0	1,719000	9327 9327
Igniter,Friction	Militar	y N	22100 22100 22100 22100 22100 22100 22100 22100 80010 80010	+-000 15-000 17-000 18-000 19-000 20-000 05-000 06-000 07-000	< 17 2 < 173 < 245 < 295 < 207 < 344 < 2192 < 12 < 2 4	.543860 .583545 .792145 .098039 .508274 .296849 .352617 .982456 .477696 .306614 .209894	000000000000000000000000000000000000000	0.005754 0.004080 0.003384 0.004824 0.002904 0.000456 0.080143 0.433536 0.712607	9327 9327 9327 9327 9327 9327 9327 9327
Igniter,Ignition Plug	Militar Unknown	y A G	8001(J NPRD: JF 1695) (NPRD: 1435)	-051 3-000 -095	2 47 35 112 8 47 72	.634366 .447881 .800260 .736274 .547009 .619048 .395702 .054000	3 501 1 1	1,138794 4,444000 0,117000 0,021000	9327 9327 9327 9327

What about Storage Reliability?

2.5 Conclusions and Recommendations

The data analyzed for solid propellant motors indicated no motor failures which would have failed the mission requirements. Until more data is collected, it is recommended that the following reliability prediction be used for solid propellant units:

5	Year	Reliability:	.994	at	50%	confidence
			.981	at	90%	confidence
10	Year	Reliability:	.964	at	50%	confidence
			.890	at	90%	confidence

Igniters are not included in this prediction. See Section 3 for analysis of igniters.

	R(t) ran	dom = exp	p (-xt)					
		R(t)) Aging	λ				
	50% con	fidence	90% con	fidence	50%	90%		
Classification	5 yrs.	10 yrs.	5 yrs.	10 yrs.	Confidence	Confidence		
Solid Rocket Motor Pyrogen Igniters Solid Rocket Motor Pyrotechnic Ig- niters	.998 .995	.986 .991	.994 .984	.954 .969	65 x 10 ⁻⁹ 65 x 10 ⁻⁹	129 x 10 ⁻⁹ 129 x 10 ⁻⁹		
Gas Generator Igniters	.997	.979	.991	.934	65 x 10 ⁻⁹	129 x 10 ⁻⁹		

FIGURE 3.3-1. IGNITER RELIABILITY PREDICTION MODEL

R(t) igniter = [R(t) aging] x [R(t) random]

 $R(t)_{random} = \exp(-\lambda t)$

Conclusions

Reliability Predictions for Solid Rocket Motors and Ordnance

Historical failure data on similar systems (adjusted for new design) is optimal

- Can be difficult to obtain for contractors due to being OEM proprietary data
- Common for SRM manufacturers to use engineering judgement for reliability

Parts Count Method is simple and relatively fast

- NPRD-16 contains 10,000+ parts (categories and subcategories)
- Failure Rates vary widely across same part, so care must be used in selection

Parts Stress Method usually gives better estimates of failure rates

- Requires knowledge of part and detailed operating environments
- NSWC-11 does not contain most parts related to SRMs

Physics of Failure Method most accurate for mechanical parts

• *Requires much time and detailed knowledge*

When no historical data exists – we use combination of Parts Count and Parts Stress

Free Mechanical Failure Rate Data Sources

https://aldservice.com/Reliability-Software/free-mtbf-calculator.html

https://reliabilityanalyticstoolkit.appspot.com/

(29. Mechanical reliability data)

http://everyspec.com/USN/NSWC/NSWC-11_RELIABILITY_HDBK_MAY2011_55322/

<u>Not Free</u>

https://www.quanterion.com/product/publications/nonelectronic-parts-reliabilitydata-publication-nprd-2016/ \$275+