Addressing Finitely Repeated Problems in Engineering Decision Making Under Uncertainty

Christopher J. White & Bryan L. Mesmer, PhD The University of Alabama in Huntsville

Engineering Design Background

 Decision-based design views engineering design as a series of decision problems.

 Subfield of value-based engineering uses value models instead of performance attributes as objectives.

Value-Based Engineering

- Fundamentals of Decision Making for Engineering Design and Systems Engineering [2].
- Proposes value-modeling and utility theory as the basis for engineering decision making, including design

Heavy emphasis on Von Neumann and Morgenstern [3]

Value-Based Engineering

 Hazelrigg simultaneously proposes ordinal preference functions and expected utility.

These are not compatible.

An Example

An Example

An Example

The St. Petersburg Paradox

Described by Daniel Bernoulli [1].

- Flip a fair coin until it comes up heads.
- n = # of consecutive tails
- Win \$2ⁿ

• Question: How much would you pay to play?

The St. Petersburg Paradox

Expected Value:

$$E[V] = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} * \$2^n = \infty$$

- Infinite expected value
- No one will pay an infinite entrance fee.

The St. Petersburg Paradox

Bernoulli's solution uses logarithmic utility.

Based on players current wealth.

Only has infinite expected utility if player is infinitely wealthy.

St. Petersburg Paradox: Relevance

 Value model validity standards can preclude the use of expected value.

Engineering design problems present more issues, though.

- Highly unlikely, highly impactful outcome
 - This is the basis of the St. Petersburg Paradox

St. Petersburg Paradox: Simulation

- We will use simulation.
 - Analytical solutions for money quantities of interest is possible here.
 - Not possible/feasible for many real-world engineering problems.
- St. Petersburg game:
 - Geometric outcome distribution
 - Exponential value function
 - Optional: exponential utility function

St. Petersburg Paradox: Simulation

- We will play many times.
 - Number of repetitions from 1 to 2,000
 - Winnings per play will be recorded.
- Entrance fee based on exponential utility function will be noted.

St. Petersburg Paradox: Simulation

Exponential Utility

$$utility = 1 - e^{-\frac{value}{a}}$$

a is a wealth parameter

• We'll use a = 100, 1000, and 10,000

A A A A A A A	a = 100	a = 1,000	a = 10,000
Expected Utility	$3.879 * 10^{-2}$	$5.538 * 10^{-3}$	$7.199 * 10^{-4}$
Certainty Equivalent	\$3.96	\$5.55	\$7.20

Average Winnings

Average Winnings Quantiles

Equivalent Quantiles

 Probability of profit is very different for different numbers of repetitions.

• Figures are a = 100 and 10000

Median Winnings

Discussion

- St. Petersburg games look wildly different depending on how long they are played.
- Number of repetitions is important.
- Real world engineering problems often have few repetitions.

St. Petersbug games may serve as a test-bed for developments in engineering design theory.

References

- [1] D. Bernoulli, "Exposition of a new theory on the measurement of risk," *Econom. J. Econom. Soc.*, pp. 23–36, 1954.
- [2] G. A. Hazelrigg, Fundamentals of decision making for engineering design and systems engineering. 2012.
- [3] J. Von Neumann and O. Morgenstern, *Theory of games and economic behavior*. Princeton university press, 1953.
- [4] S. S. Stevens, "On the Theory of Scales of Measurement," Sci. New Ser., vol. 103, no. 2684, pp. 677–680, 1946.

Questions?

