FMEA/CIL 201

RAMS TRAINING SUMMIT

PAUL BRITTON NASA

GWYER SINCLAIR NASA

RYAN DETERS BASTION TECHNOLOGIES

FMEA/CIL SKILLS

- Who will be good at FMEA?
 - Analytical, Methodical, Skeptical, Imaginative

FMEA/CIL SCOPE

- FMEA/CIL is a powerful design-analysis tool (and communication tool)
- What are the reliability and safety expectations?
 - Risk understanding and acceptance
 - Design influence
- FMEA is bottoms-up. Where is the bottom? Where is the top?
 - What should be the boundaries of the analysis?
 - Initial Criticality Assessment
- ullet Are there down stream requirements that depend on FMEA/CIL results?

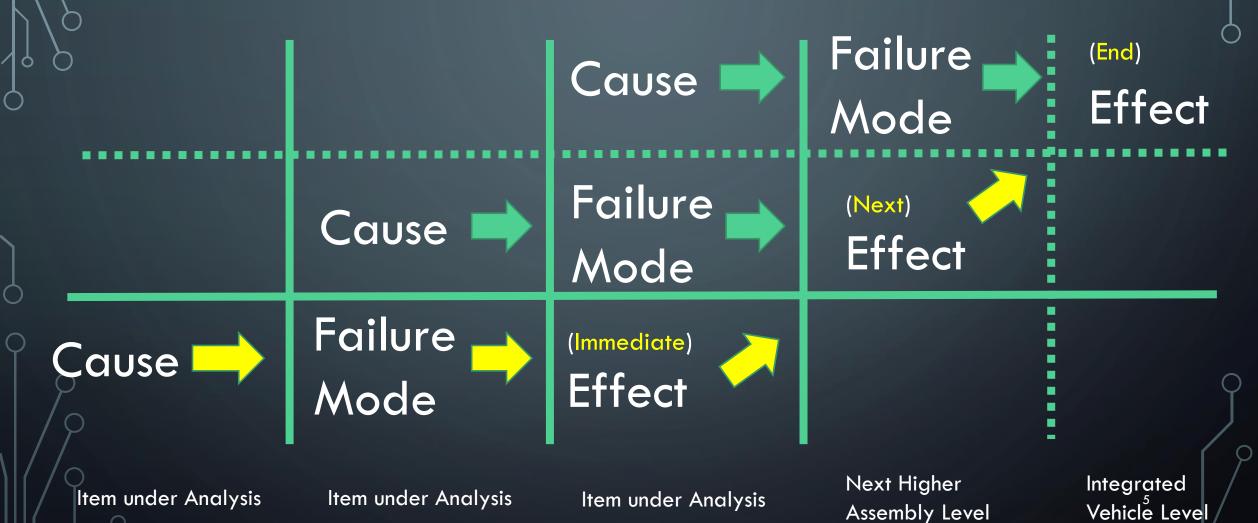
TERMINOLOGY

Item under Analysis

Immediate Effect Next Higher Assembly Level

Next

Effect


Integrated
Vehicle Level

End Effect

The FMEA intends to identify all failure modes at the bottom level and to categorize the worst-case severity of the end effect by determining the worst-case Criticality of each failure mode.

The bottom. Example 1: hardware level = individual components or circuit paths. Example 2: functional level = LRU or box level. The intent is to drive reliability and safety into the architecture, testing, operations and detailed design as earlier as possible.

MORE TERMINOLOGY

FMEA/CIL USE-CASES

- Criticality can help inform risk-based decisions
- Design influence
- Test and Inspection influence
- Support down-stream analysis and requirements

CIL WORKSHEET FIELDS

- Prepared by Information
- Hardware Information
 - Item Name, Part Number, Schematic ID, System Location, etc.
- Item Function Description
- Failure Mode
- Failure Causes
- End Failure Effect by Phase or Operational Mode
- Worst Case Criticality
- Failure Detection
 - Failure Detection, Software Response, Corrective Action
- Retention Rational
 - Design, Test, Inspection, Failure History
- References
 - Operational Requirements, Hazard Reports, Supplier FMEA, Other related databases

FMEA Worksheets

CIL Worksheets

CRITICALITY DEFINITIONS

Criticality Definition

- 1 Failure that could result in loss of life or vehicle
- Failure in safety or hazard monitoring system that could prevent system from detecting a hazardous condition or fail to operate during such condition
- 1R Redundant hardware that, if all failed, could cause loss of life or vehicle
- 3 Failure that could cause degradation to mission objectives

CIL RETENTION RATIONALE

Retention rationale consists of controls to minimize the risk associated with the critical item

- Design
 - Manufacturing controls, safety factors, unique physical characteristics
- Tests
 - Identify specific tests performed that would detect presence of failure
- Inspections
 - Identify specific Inspections performed that would detect presence of failure
- Failure History
 - Summary of all previous occurrences and actions taken
- Operational Use
 - Description of operations to mitigate or limit effect
 - Malfunction Procedures, Operating Constraints, Crew Training

FMEA EXAMPLE

Worksheet #:		CCC-ELE-SYS-ASSEM-PART-###		System:		Element X	Element X		ng.: Peter		
Rev:		G		Subsystem:		System M	System M		gr.: Paul		
Date Modified:		4/9/1920		Design Eng.:		Fred		Integrated Re	el. Peter		
								Eng.:			
Failure Mode:		Leakage - External		Design Mgr.:		Sally	y Inf		Rel. Paul		
								Mgr.:			
PART INFORMATION											
1	LRU	Fill/Drain Line, System,	Dw	g Nbr:	201-#	######, Rev -	Suppli	er Item	Fill-Drain Duct Assembly		
Name:		Element	11171								
LRU N		C 201-######-#	Dwg Find		2	Su		er Item Nbr:	##### -101		
			Nb	r:							
	Item	Fill/Drain Line, System,	Dwg Qty:		1	Su		er Dwg Nbr:	#####-101, R	#####-101, Rev -	
Name:		Element									
ltem Ŋ		C 201-#######-#	Schematic		201-######, Rev -		Supplier Dwg Find		N/A		
	3.00		Nb	r:			Nbr:				
	LCN:	N/A	Sc	hematic	AA-B	#	Suppli	er Name:	ABCDEFG In	C	
			ID:								
ITEM FUNCTION & FAILURE CAUSES											

Item Function:

The fill/drain line is an XYZ-### Inconel line that spans between the fill/drain disconnect and the fill/drain valve. The line is insulated. The line includes flexible joints that allow for limited movement of the line. The line includes a pressure and temperature port near the fill/drain valve interface. This worksheet analyzes the line fails by external leakage.

Failure Causes:

- 1. Defective sealing surfaces on the flange
- 2. Failure of tube/bellows weld
- 3. Failure of bellows longitudinal weld
- 4. Initial crack in tube propagates due to cyclic loading
- Excessive vibration
- 6. Improper installation (bolt torqueing)
- 7. Mishandling
- 8. TPS pressure collapse resulting in excessive structural loads
- 9. Excessive interface forces/moments at the Fill/Drain Valve
- 10. Excessive interface forces/moments at the Quick Disconnect
- 11. Excessive interface forces/moments at the vehicle attachment points
- 12. Excessive flange deflection
- 13. Fatigue failure of instrumentation boss
- 14. Deformation due to cyclic loading
- 15. Damage to line induced by small line support loads