

# Two Is One, One Is None: A Discussion on Redundancy

RAMS XIII
Huntsville, AL
November 30<sup>th</sup>/December 1<sup>st</sup>, 2021

# Objective



"Goldilocks" situations of redundancy:

Too Little – Single points of failure.

Too Much – More doesn't mean better.

Just Right – The "Best" amount of redundancy

## Concepts



- In engineering, redundancy is the duplication of critical components or functions of a system with the intention of increasing reliability of the system, usually in the form of a backup or fail-safe.
- A Single Point of Failure (SPOF) is a part of a system that, if it fails, will stop the entire system from working.
- A Common Cause Failure (CCF) event is a failure where two or more items fail within the mission time from a common failure mechanism.



# The 2016 Nipigon River Bridge Closure





#### The 2016 Nipigon River Bridge Closure

#### The Trans-Canada Highway





#### The 2016 Nipigon River Bridge Closure (cont.)

#### The Trans-Canada Highway







#### The 2016 Nipigon River Bridge Closure (cont.)

- Received winter damage January 2016, resulting in indefinite closure of the bridge.
- All road traffic stopped for 17 hours, until a single lane was reopened and used for alternating traffic between directions.

- As of the next day, 15-20 minute wait to cross single-lane.
- Estimated for that day over \$100 million of goods within Canada delivered by truck were delayed by this closure.



#### The 2016 Nipigon River Bridge Closure (cont.)

#### The Trans-Canada Highway





# Additional Redundant Trains of Communications on Space Vehicles



9



#### Additional Redundant Trains of Communications

- From an outsider's perspective, adding redundant trains into a system would increase the reliability of that system by a factor equal to the number of redundant trains, or does it?
- The aerospace industry often has limitations on weight, space, cost, and schedule, so a better understanding of the impact that redundancy has on reliability can result in more appropriate design decisions.
- 2017 RAMS presentation, "How Much Redundancy is too Much Redundancy?" by Adam Harden.



#### Additional Redundant Trains of Communications (cont.)

Analysis utilizing redundant train combinations of communication line system on an imaginary space vehicle:

- A "Success" is any one train succeeds (meets its criteria).
- The reliability and probability of failure (PoF) of each combination will be determined from one up to eight trains.
- Perform comparison of the different combinations to demonstrate the returns on reliability.



BASTION TECHNOLOGIES

- The fault tree to the right presents the logic for failure of comm-1 and comm-2
- The PoF for the top gate is:
  - Common Cause Failure (CCF) for 2 of 2 Comm lines, OR
  - Comm-1 AND Comm-2 fail
- For this example, the CCF probability is the product of the independent failure probability and the alpha factor for the failure combination 2 of 2 for generic rate based events
- Similar logic is used to incorporate additional trains





#### Additional Redundant Trains of Communications (cont.)

 The below diagram shows a 1-train line system that communicates data between a space vehicle's computer and a remote terminal connected directly to it.



 The table below presents the estimated reliability and Probability of Failure (PoF) of the communication line.

| Success<br>Criteria | Reliability | Failure Criteria | PoF                     |
|---------------------|-------------|------------------|-------------------------|
| 1 of 1              | 0.999       | 1 of 1           | 1.00E-3<br>(1 in 1,000) |

#### Additional Redundant Trains of Communications (cont.)

| Success<br>Criteria | Reliability | Failure<br>Criteria | PoF                        | % Change in Reliability from a Single Train | % Change in Reliability from<br>Each Additional Train |
|---------------------|-------------|---------------------|----------------------------|---------------------------------------------|-------------------------------------------------------|
| 1 of 1              | 0.999       | 1 of 1              | 1.00E-03<br>(1 in 1,000)   | NA                                          | NA                                                    |
| 1 of 2              | 0.99993     | 2 of 2              | 6.98E-05<br>(1 in 14,300)  | 93.0%                                       | 93.0%                                                 |
| 1 of 3              | 0.999959    | 3 of 3              | 4.12E-05<br>(1 in 24,300)  | 95.9%                                       | 2.9%                                                  |
| 1 of 4              | 0.999975    | 4 of 4              | 2.52E-05<br>(1 in 39,700)  | 97.5%                                       | 1.6%                                                  |
| 1 of 5              | 0.999983    | 5 of 5              | 1.68E-05<br>(1 in 59,500)  | 98.3%                                       | 0.8%                                                  |
| 1 of 6              | 0.999987    | 6 of 6              | 1.30E-05<br>(1 in 76,900)  | 98.7%                                       | 0.4%                                                  |
| 1 of 7              | 0.999993    | 7 of 7              | 7.17E-06<br>(1 in 139,400) | 99.3%                                       | 0.6%                                                  |
| 1 of 8              | 0.999996    | 8 of 8              | 4.29E-06<br>(1 in 233,200) | 99.6%                                       | 0.3%                                                  |

Largest increase in reliability comes from the addition of a second train. Note that the percent change in reliability from each additional train is reduced at each interval, except from a group size of 6 to 7.

# "Just Right"



# The "Best" Amount Of Redundancy

# "Just Right?"



- The "Best" amount of redundancy is always evolving.
- Time Infrastructure and systems built decades ago were sufficient at the time but with aging comes degradation of effectiveness.
- Costs A safety feature from decades ago would be too costly or bulky to make standard before, can now fit in a fraction of the space and at a fraction of the cost.
- The "Human Element" Navigate the waters.
- "Make" the "Best" of it.

# "Just Right?" (cont.)





#### Conclusion



 Too Little – Infrastructure that relies heavily on truck deliveries without alternate transit points can lead to disaster.

 Too Much – Adding significant redundancy does not necessarily mean significant increases to reliability.

Just Right? - Find the sweet spot.

### Questions?



**POC: Marion Whatley** 

Marion.E.Whatley@nasa.gov

256-544-1384

#### Backup Chart "Too Much"



Additional Redundant Trains of Communications (cont.)

 The table below presents the calculated Alpha Factor values, of specific failure combinations, for generic rate based events

| Group Size | Success Criteria | Failure Criteria | Alpha Factor |
|------------|------------------|------------------|--------------|
| 2          | 1 of 2           | 2 of 2           | 6.88E-02     |
| 3          | 1 of 3           | 3 of 3           | 4.12E-02     |
| 4          | 1 of 4           | 4 of 4           | 2.52E-02     |
| 5          | 1 of 5           | 5 of 5           | 1.68E-02     |
| 6          | 1 of 6           | 6 of 6           | 1.30E-02     |
| 7          | 1 of 7           | 7 of 7           | 7.17E-03     |
| 8          | 1 of 8           | 8 of 8           | 4.29E-03     |

# Backup Charts (Cont'd)



#### **BIBLIOGRAPHY**

#### Chart 2 -

https://en.wikipedia.org/wiki/Redundancy\_(engineering)

https://ntrs.nasa.gov/citations/20170012470

#### Chart 4 -

https://en.wikipedia.org/wiki/Nipigon\_River\_Bridge

#### Chart 5 & 6 -

https://en.wikipedia.org/wiki/Trans-Canada\_Highway

https://www.google.com/maps

#### Chart 7 -

https://en.wikipedia.org/wiki/Nipigon\_River\_Bridge

https://www.cbc.ca/news/canada/nipigon-river-bridge-numbers-1.3398986

#### Chart 8 -

https://en.wikipedia.org/wiki/Trans-Canada\_Highway

#### Chart 9 -

https://www.certificationkits.com/cisco-certification/cisco-ccnp-switch-642-813-exam-study-guide/cisco-ccnp-switch-high-availability-a-redundancy/

#### Chart 10 to 14 -

https://ntrs.nasa.gov/citations/20170012470

#### **Chart 16 -**

https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%291532-6748%282002%292%3A3%2827%29https://www.tspe.org/page/ThePEandPolitics

#### Chart 17 -

https://theieltsgenius.com/speaking-part-3-saying-depends/