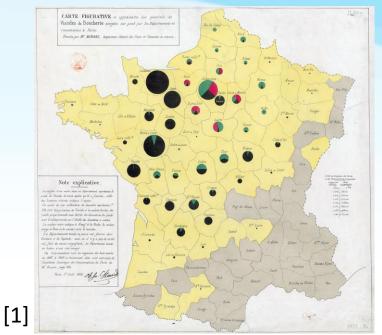
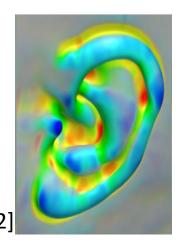
Potential Issues of the Transition to Digital Displays for Safety Critical Information

Jacob D. Hauenstein

The University of Alabama in Huntsville


Overview


- Visualization basics
 - What is vis.?
- Transition to digital
 - Physical vs. digital
- Potential issues
 - Reliability
- Possible solutions
 - Ongoing research

Visualization Basics I

- Idea: convey info. visually
 - Digitally, on paper, mechanically, ...
- Different kinds
 - Interactive, noninteractive, ...
 - Scientific vis., data vis., info vis., ...
- Different goals
 - Build hypotheses
 - Make decisions
 - Educate

— ...

Visualization Basics II

- Very active area of research
 - Part of data science / AI / ML
 - New types of data
 - Larger amounts of data
 - New contexts
 - Better ways to present data

Visualization Basics III

- Focus here: safety critical data vis.
 - Esp. in civilian and military automobiles, aircraft
 - Traditionally displayed w/ physical indicators
 - Time sensitive
- Ex:
 - Speedometer
 - Temperature gauge
 - Fuel gauge
 - Altimeter

Visualization Basics IV

These vis. are safety critical

• Thus, reliability is critical:

Even short duration outages are unsafe

Failures difficult to resolve

Can't just swap out dashboard while driving

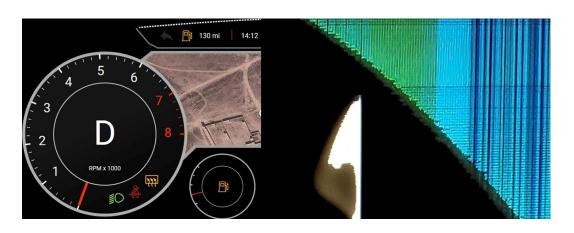
Transition to Digital I

- Recently, move from physical to digital displays
 - Replace physical indicators w/ digital vis.
 - Often, replace multiple indicators with one display
 - Automobiles: digital cockpit
 - Expected to be norm by 2030 [6]
 - Aircraft: glass cockpit
 - Already present in many aircraft

Transition to Digital II

- Digital displays: many advantages [7]
 - More versatile
 - Vis. different data at different times
 - Change vis. style
 - Change vis. location
 - Cheaper
 - Less maintenance

Transition to Digital III



Potential Issues I

- Multiple physical indicators → one display
 - Multiple points of failure → single point of failure
- Failure of one display: more missing data
- Damage to one display: more missing data
 - Additional implications for touchscreen

Potential Issues II

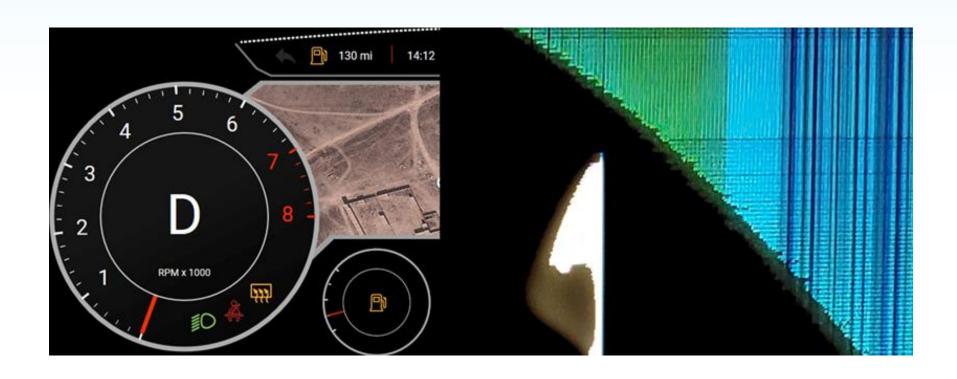
- Digital displays: higher info density
- Harder to view under adverse environ. conds.
 - E.g., smoke, intense vibrations, occlusion

Possible Solutions I

- Some obvious potential solutions exist:
 - Redundant digital displays
 - E.g., Garmin G1000 reversionary mode
 - Both digital and physical indicators
- However, other issues arise:
 - Space limitations
 - Weight limitations
 - Cost limitations
 - Time limitations

Possible Solutions II

- Our proposed solution:
 - Automatically analyze functionality / visibility of display
 - E.g., detect non-working regions of display, environmental issues
 - Adjust vis. to ensure visibility
 - E.g., if right-hand side of display failed, display critical info. on left side
 - Change presentation as necessary
 - E.g., if dial won't fit, switch to numeric


Possible Solutions III

• Ex: Consider a working digital cockpit display

Possible Solutions IV

• Vs. a damaged one

Possible Solutions V

 Vs. one where the damaged region is detected and the display responds

Possible Solutions: Ongoing Research I

- Current research project:
 - Automated detection of display / environmental issues
 - Cheap, off-the-self sensor(s)
 - Analyze visibility of display regions
 - Easy retrofitting of hardware (no display modification)
 - Automated response to detected issues
 - Occlusion
 - Display failure
 - Display damage
 - Environmental conditions

Possible Solutions: Ongoing Research II

- Advantages:
 - Automated (and fast!) failover
 - Uninterrupted viewing of data
 - Distraction free
 - Beneficial even when redundancy present
 - Account for scenarios obvious solutions don't
 - Environ. conditions
 - Potentially obviate need for redundancy

Conclusions

- Safety critical info moving to digital
- Fewer digital displays vs. traditional
 - Maybe single point of failure
- Digital displays more versatile
- Possible to detect failure
- Possible to adjust for failure

Bibliography I

- 1. Wikimedia Commons contributors, "File:Minard-carte-viande-1858.png," Wikimedia Commons, the free media repository, https://commons.wikimedia.org/w/index.php?title=File:Minard-carte-viande-1858.png&oldid=528054556 (accessed November 11, 2021).
- 2. Hauenstein, Jacob D., and Timothy S. Newman. "Descriptions and Evaluations of Methods for Determining Surface Curvature in Volumetric Data." Computers & Graphics 86 (February 2020): 52–70. https://doi.org/10.1016/j.cag.2019.11.003.
- 4. Wikimedia Commons contributors, "File:Fuel gauge (Toyota Corolla) (cropped).jpg," Wikimedia Commons, the free media repository, https://commons.wikimedia.org/w/index.php?title=File:Fuel_gauge_(Toyota_Corolla)_(cropped).jpg&oldid=577865672 (accessed November 11, 2021).
- 5. Wikimedia Commons contributors, "File:AltimeterLNAGT.jpg," Wikimedia Commons, the free media repository, https://commons.wikimedia.org/w/index.php?title=File:AltimeterLNAGT.jpg&oldid=472947297 (accessed November 11, 2021).

Bibliography II

- 6. ABI Research, "Digital Cockpit to be Mainstream by 2030 Due to Major Restructure of the Connected Automotive Infotainment Architecture," PR News Wire, https://www.prnewswire.com/news-releases/digital-cockpit-to-be-mainstream-by-2030-due-to-major-restructure-of-the-connected-automotive-infotainment-architecture-301126097.html (Accessed 16 December 2020).
- 7. Knight, J. "The Glass Cockpit," Computer 40 no. 10 (2007): 92-95.
- 8. Wikimedia Commons contributors, "File:SR22TN Perspective Cockpit.jpg," Wikimedia Commons, the free media repository, https://commons.wikimedia.org/w/index.php?title=File:SR22TN_Perspective_Cockpit.jpg&oldid=491779035 (accessed November 11, 2021).
- 9. Wikimedia Commons contributors, "File:Osaka Motor Show 2019 (179) Tesla MODEL 3.jpg," Wikimedia Commons, the free media repository, https://commons.wikimedia.org/w/index.php?title=File:Osaka_Motor_Show_2 019_(179)_-_Tesla_MODEL_3.jpg&oldid=494074667 (accessed November 11, 2021).