
Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

This presentation may not be copied in part or in whole without

written permission from Ann Marie Neufelder

Real Simple Reliable
Software - Perfectly Suited
for DevSecOps

© Ann Marie Neufelder, SoftRel, LLC, 2020

ann.neufelder@missionreadysoftware.com

http://www.missionreadysoftware.com

1

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
2

Mission Ready
Software Founder
Ann Marie
Neufelder

Chairperson of IEEE 1633 Recommended Practices for
Software Reliability Working Group (2016 edition)

38 years of SW engineering and SW reliability experience

Authored NASA’s Software FMEA and FTA training webinar

Has world’s largest database of software failure events and
root causes (almost 1 million)

Has world’s largest database of actual software reliability
data (700 factors by hundreds of organizations)

Authored Intel’s Vendor Assessment

Has taught Software Reliability to more than 5000
engineers

Co-authored USAF Rome Laboratory “System and Software
Reliability Assurance Notebook", Boeing Corp.

Authored “Ensuring Software Reliability”, Marcel-Dekker,
1993.

Authored “Effective Application of Software Failure Modes
Effects Analysis", published for CSIAC, 2014.

U.S. Patent 5,374,731 for a predictive model

2

http://softrel.com/notebook.zip

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
3

Agenda

 Overview
 Reliable software– what is it and how does it differ from quality?
 Software failures that have affected mission critical programs
 Key metrics indicating reliable software
 Reliability statistics for world class, mediocre and distressed software/firmware programs
 Relationship between HW and SW reliability

 Root causes for nearly every major software failure and how they can be predicted
Real simple ways to allocate system reliability objectives to software
 Past history, R&D $, achievable failure rates

 Real simple ways to establish an early prediction for software
 Ranked list of factors quantitatively proven to affect software reliability
 What every failed and successful software project has in common myths - a few popular but

overrated factors

 Real simple ways to track software reliability growth during testing
 How software reliability fits into the Agile/Scrum project execution and DevSecOps

3

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Overview
Reliable software– what is it and
how does it differ from quality?
Software failures that have affected
mission critical programs
Why tasks for reliable software
aren’t necessarily part of software
quality
How the underlying failure modes
can be predicted before they cause a
failure in operation
Key metrics indicating reliable
software
Reliability statistics for world class,
mediocre and distressed
software/firmware programs
Relationship between HW and SW
reliability

4

This is why you are reading
this presentation
Software/firmware is increasing in size at a
hyper exponential rate.

Only two decades ago size was measured in
1000s of source lines of code. Millions of SLOC
of relatively rare.

Now size is routinely measured in multi-
millions.

Compare your smart phone, HVAC, lighting,
appliances to only 10 years ago. Less
hardware, more software.

The increase in size of F16A to F35 software is
just one example[1]

With increased size comes increased
complexity and increased failures due to
software as discussed in this class.

Things are not getting better as long as
software size is increasing.

Unfortunately, the methods for developing
software haven’t improved at the same rate.
You will learn more about this in this class.

0

5000000

10000000

15000000

20000000

25000000

30000000

1960 1980 2000 2020

SIZE IN SLOC OF FIGHTER
AIRCRAFT SINCE 1974

Software failures that have affected mission
critical programs
• Fratricide due to software failures is no longer theoretical.

• IFF and target ID failures in Patriot March 2003 which shot down British Tornado Aircraft [1]
• SCUD missile attack in 1991 which killed 27 soldiers[2]
• AFATDS friendly fire Fort Drum in 2002[3]

• Lost missions due to software failures is no longer theoretical
• F22 international date line defect [4] – Loss of entire mission and nearly lost 11 aircraft
• As per the Joint System Safety Engineering Handbook Appendix F[5]

• Missile Launch Timing Error Causes Hang-Fire
• Reused Software Causes Flight Controls to Shut Down
• Flight Controls Fail at Supersonic Transition
• Incorrect Missile Firing from Invalid Setup Sequence
• Operator’s Choice of Weapon Release Overridden by Software Control

• Cancelled projects due to software failures and gross underestimates of software size
• Future Combat System (FCS) originally planned to have 33.7M lines of code. Then it

was 63.8 M and then 114 M. It would have been significantly bigger than any other
system on earth.[6]

• F35 software was grossly underestimated and was the cause of several GAO
investigations [7]

• As we will see in upcoming modules, gross underestimates of size are the leading
factor in unreliable software whether the program is cancelled or not

6

Failures aren’t limited to only
shutdown or total failures

• This is a common myth which
is not supported in any IEEE
standard.

• Reliability engineers assume
that the software shutting
down is equivalent to wear-
out for hardware.

• The definition of failure has
never been from the root
cause viewpoint – only the
effects viewpoint.

• Example: A missile launcher is
required to launch when a)
launcher is operational b)
there’s no abort c) the launch
window can be met

Failure Root causes (defects)

Inadvertent missile
launch

Prohibited state transitions
allowed by the code

Launch is executed
despite an abort

Faulty logic (failed to detect abort)
or timing (detected abort too late)

Launch is executed
when launcher is not
operational

Missing or faulty logic for all faults
that cause launcher to be
operational.

Launch is executed
when window cannot
be met

Faulty launch calculator algorithm
or faulty logic in detecting missed
window

The system isn’t in
launch ready mode for
specified <x> hours per
day

Initialization code takes too long
to execute on startup

Launch isn’t executed
when commanded

Faulty logic – all conditions are
met but false negative logic

Target is missed Faulty timing - missile is launched
too early or too late

Faulty launch calculator algorithm

Faulty data – unhandled overflow
or underflows with data

Faulty timing – built up timing
inaccuracies

7

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
8

FAQ: What’s
the
relationship
between SRE
and SEI
CMMi?

• The facts[1] show that all organizations with highly
reliable software have defined processes

• However, the facts also show that organizations with
defined processes aren’t guaranteed to have highly
reliable software

• Software processes such as ASPICE, SEI CMMi, etc.
provide a required foundation for reliable software
but are proven to be insufficient for highly reliable
software. Reliable software also requires:

• People who understand the industry and
product

• Execution – smaller cycles and team sizes

• Avoidance of known risks

• Techniques such as model based specifications

• The maturity of the design itself

• We have 28 years of data[1] to show that

• SEI CMMi level 2 and 3 organizations have fewer
defects found in operation than SEI CMMi level 1

• However, SEI CMMi level 4 and 5 organizations
do not have fewer defects than SEI CMMi level 3.

• Multiple CMMi level 4 and 5 organizations had
failed software projects due to overconfidence.

8

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
9

SRE methods
include this
tasks

…which
aren’t
typically
conducted
by software
QA people

• Past history, R&D dollars, achievable failure rates

Allocate a portion of the system reliability to software

• Any reliability figure of merit

• Strengths and gaps that directly translate to more or
fewer defects

• Release maturity- successful, mediocre or distressed

• ROI of changing a few specific development factors

Predict these things before the code is even written

• Progress towards a system reliability objective

• Test hours needed to reach specific level of maturity

• Maintenance staffing required to avoid defect pileup
which causes the next release to be late

Estimate these things during testing

• Failure modes in plain sight in the specifications

• Testing for failures instead of success

Identify these during development and test

All SRE methods apply to both SW and FW

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
10

Key metrics
indicating
highly mature
and reliable
software

• It’s been proven since the 1970s that software fault rate
increases, peaks and then decreases prior to maturity

• Maturity level at deployment separates the world class from the
distressed

• Increasing fault rate– the customers will see it as a failed product
in 100% of all cases

• Fault rate barely decreasing- customers will be unhappy with it
• Fault rate is steadily decreasing – customers won’t notice the SW

which is exactly what you want

• With agile or incremental development there are multiple peaks
until the final burn down of defects

• None of the distressed and most of the mediocre software
projects were tracking their faults or fault rate maturity prior to
deployment.

• We cover how to track fault rate during testing in the
Integrating Software and Hardware Reliability Class.

10

Metric World
Class

Mediocre Distressed

Fault rate
trend

Steadily
decreasing

Peaking or
recently
peaked

Increasing

Percentage
of defects
identified
prior to
deployment

>=75% 40-74% <=39%

0

2

4

6

8

10

12

N
o

n
 C

u
m

u
la

ti
ve

d

ef
e

ct
s

d
is

co
ve

re
d

Usage/test time

Defects discovered over life of versionFailed projects
deploy prior to
peak when <=
39% of defects
are removed

Mediocre projects
deploy between 40%

and 75% of area
under curve

Successful
projects deploy
at > 75% of the
area under this

curve

SW versus
HW MTBF

• Hardware MTBF represents mean time
between the same type of failure in the same
replaceable LRU.

• Example: If a lightbulb has an MTBF of 7 years,
you may be replacing it in 7 years.

• Software doesn’t wear out so software MTBF
presents the mean time between any failure in
the entire software program

• Many different types of defects in many
lines of code contribute to the MTBF

• Replacing the software has no effect unless
the defect is removed and the software LRU
rebuilt

• If we knew where they were in the code,
we could remove them so MTBF is
measuring time until someone discovers
one we don’t know about

• Typically it can take 2-8 years for every
defect in the software to be discovered in
operation

• However, it’s been shown that there is a
predictable trend for the software failures
as shown on next slide

11

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
12

Software/Hardware Reliability

HW reliability
prediction

Software Reliability Prediction

Mean Time To Repair Mean Time To SoftWare Restore

Burn in phase of
Bathtub curve

Reliability growth via operation and defect correction

Wear out phase of
Bathtub curve

1. Obsoletion – Target hardware or environment has
changed and software must change with it. Obsoletion
can happen overnight.

2. Software design and code becomes too unstructured to
make any changes to (can take 10+ years).

Reliability growth Can be more limited for SW than for HW

FMEA SFMEA on requirements, interfaces, detailed design/code,
usability, maintenance actions

FTA Software is included on the system FTA

12

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
13

Software reliability
growth versus
hardware
• Software reliability growth typically

starts off slow. If/when defects are
removed then it increases.

• No wear out encountered,
however, once new features are
injected the growth resets.

• If environment become
obsolete software can become
unusable quickly.

• Hardware reliability typically starts
out better and then encounters
wear-out.

13

0

20

40

60

80

100

120

140

160

180

0 5 10 15

ES
TI

M
AT

ED
 M

TB
F

COMPARISON OF
TYPICAL SOFTWARE

(EXPONENTIAL) VERSUS
HARDWARE (DUANE)
RELIABILITY GROWTH

Predicted MTBF in hours Exponential

Predicted MTBF in hours Duane

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

The root causes
behind virtually
every major
software failure

And how you can predict them a
priori

14

Where software failures originate









Software
engineers End users

Systems
engineers

What –
System

requirements

Why -
Problem to
be solved

15

Software
failure modes
are very
predictable –

Just a short
list of the
software root
causes that
keep
repeating
themselves

• Faulty error handling – Apollo 11 lunar landing, ARIANE5, Quantas
flight 72, Solar Heliospheric Observatory spacecraft, Denver Airport,
NASA Spirit Rover (too many files on drive not detected), F22
International Dateline

• Faulty data definition - Ariane5 explosion 16/64 bit mismatch, Mars
Climate Orbiter Metric/English mismatch, Mars Global Surveyor,
1985 SDIO mismatch, TITANIV wrong constant defined, Flight
Controls Shut Down, Incorrect Missile Firing from Invalid Setup
Sequence

• Fault logic– AT&T Mid Atlantic outage in 1991

• Timing - SCUD missile attack Patriot missile system, 2003 Northeast
blackout, Therac 25, Missile Launch Timing Error Causes Hang-Fire

• Faulty state transitions -Incorrect Missile Firing from Invalid Setup
Sequence

• Faulty algorithms - Flight Controls Fail at Supersonic Transition, 2003
Inadvertent shooting of British Aircraft

• Faulty functionality – Operator’s Choice of Weapon Release
Overridden by Software Control

• Peak load conditions - Affordable Health Care site launch, 2020 Iowa
Caucus Primary

• Faulty usability

• Too easy for humans to make mistakes – AFATDS friendly fire,
PANAMA city over-radiation

• Insufficient positive feedback of safety and mission critical
commands – 2007 GE over-radiation

Lesson to be learned – history keeps repeating itself because
everyone thinks it won’t happen to them

16

Organizational mistakes that lead to
failure modes are also very predictable

Each of the below are easily predictable well in advance of a loss
of mission due to software

• Faulty functionality - Faulty assumption that the software
engineer understands the mission and environment. Failing to
test the software in an end to end environment

• Faulty state management - Insufficient level of detail in the state
design and specifications

• Faulty timing – failing to design the timing and scheduling

• Faulty logic – failing to use simple diagrams such as logic or flow
diagrams in design.

• Faulty algorithms - Failing to consider the entire range of
possibilities for the system.

• Faulty data definition – failing to define default values, units of
measure, scale, size, type for every data element

• Faulty error handling - Failing to design for known failures in
HW, computations, power, communications, File I/O, etc.

• Faulty endurance - Failing to test the software over a passage of
time and under realistic conditions

• Faulty peak loading – Failing to consider maximum users,
operations, etc.

• Faulty usability – Failing to think about the environment around
the end user and the job that must be performed by the user

17

What you

do is

rocket

science.

Predicting

the weak

link that

leads to

certain

failure

modes is

not.

When properly applied in a timely manner
SRE has made a difference

Every one of the root causes discussed on previous pages is
detectable during development - but only if someone is looking for
them

Every one of the process root causes discussed on previous pages is
detectable during development - but only if someone is looking for
them

Since 1962 the same software root causes have resulted in thousands
of world events in space, defense, medical devices, energy, etc.

Yet software engineering continues to overlook the same root causes

18

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Real simple
Methods for
Establishing an
Allocation for
Software

All of these have been proven to
be more accurate than subject
matter expert guessing

19

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
20

Simple and accurate methods for allocation

Method Description

Past history Compute relative portion of SW versus HW failures from a past
similar system

R&D $ Compute relative portion of R&D $ dedicated to software
development

Achievable failure rates Use prediction models to determine failure rate for HW, SW. The
predicted values for each determine their allocation.

20

The first method is very accurate if the past history is recent and is calibrated for

changes in technology. As a rule, software grows 10-12% per year. So, history

data should be calibrated to assume that the software portion is growing 10-12%

per year.

Real example: An engineering company produced a system in 2015. Of all of the

deployed failures, 25% were due to software. In 2017 they were deploying a

similar system. Since historical data was 2 years old, 25% is adjusted by 10-12 %

per year. So, the prediction is between 30.25% and 31.36%. When the

equipment was deployed in 2019 - the actual portion of failures due to software

was 33%. Much more accurate than the 5% estimated by subject matter experts.

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
21

Simple and accurate methods for allocation

Method Description

Past history Compute relative portion of SW versus HW failures from a past
similar system

R&D $ Compute relative portion of R&D $ dedicated to software
development

Achievable failure rates Use prediction models to determine failure rate for HW, SW. The
predicted values for each determine their allocation.

21

If no historical data available then R&D dollars or achievable failure rates can be

used.

Example #1: The R&D budget for software is 100 million. The R&D budget for

hardware design is 200 million. Hence software gets 33% of the allocation and

hardware gets 67% of the allocation.

Example #2: The software MTBF is predicted to be 500 hours. The hardware

MTBF is predicted to be 1000 hours. The software is then allocated 33% of the

objective and the hardware is allocated 67%.

Either of the above is more accurate than “subject matter expertise”

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Predicting
reliable figures
of merit for
software before
testing

What you do is rocket science. Predicting
reliable software isn’t. Prediction models
for software have been around since 1980s.
The problem is that reliability engineers
don’t want to use them.

22

Just a few decades

ago weather

predictions had 50%

accuracy to the day.

Now they are very

accurate to the hour.

If you collect enough

data, you can predict

anything.

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
23

SRE predicts defect discovery profile/project outcome
Early in program you can manage defects, size and on time delivery and identify a failed project

During testing you can measure the actual faults to determine when to release

0

2

4

6

8

10

12

N
o

n
 C

u
m

u
la

ti
ve

 d
ef

e
ct

s
d

is
co

ve
re

d

Months of usage over life of software release

Defects predicted over life of version
Failed projects
deploy prior to

peak when < 39%
of defects are

removed

Mediocre projects
deploy between
40% and 75% of
area under curve

Successful
projects

deploy at >
75% of the
area under
this curve

Failed Mediocre Successful

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
24

SW releases are often late and
unreliable when SRE isn’t used

because of underestimates of scope
and defect potential

• No one sets out to
release half baked
software

• It happens when SRE
metrics aren’t used
early in project when
there is time to do
something about it

• Team is expecting a
small number of
defects when the
larger number could
have been predicted
and managed before
code was even
written

24

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
25

Real example of how predictions detected
future defect pileup on a large DoD program

• In this real example,
“kicking the can” predicted
to cause defect pileup

• Releases are too far apart
initially and too close
together later on

• SRE predictions allowed
for leveling of features
before code was even
written 0

5

10

15

20

25

Total faults predicted (nominal case)
from releases 1 to 5 predicted for

each month

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
26

Real examples of how predictions were
significantly closer to SME guess for MTBF

• #1 - On a real DoD program - subject matter expert guess for MTBF
was 500,000 hours.

• Actual MTBF upon initial deployment was in single digits
• Predicted MTBF was in low double digits.
• Predictive model was 5 orders of magnitude more accurate than expert

guess

• #2 – On real DoD program - subject matter expert guess for MTBF
was so high as to be virtually infinity.

• Actual software MTBF upon initial deployment was in double digits
• Predicted software MTBF was low triple digits
• Predictive model was 5 orders of magnitude more accurate than expert

guess

• Hardware reliability prediction is rarely pinpoint accurate. Software
reliability models don’t have to be pinpoint accurate to be useful. In
both of the above cases, the prediction models accurately predicted
that system objective would not be met.

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
27

Software
reliability

prediction

27

Means to predict software
defects, failure rate, etc.
before the code is even
finished

Nearly all software reliability
prediction models are based
on an assessment or survey

Based entirely on the factors
that have quantitatively been
correlated to reduced
operational defects

Factors that have
been
mathematically
proven to be related
to software
reliability

USAF Rome Laboratories
developed first prediction
model in 1987. It was
based on these factors.

A few more have been
developed since then.

Facts don’t lie.

All predictive models
agree that how the
software is developed is a
good predictor for it’s
ultimate reliability.

Static analysis
tools measure

these

SEI CMMi and
ASPICE assess

this

These are
often

overlooked

Type of
factor

Number /% of
characteristics
in this category

Examples of characteristics in this
category

Product 50 – (10%) Size, complexity, whether the
design is object oriented,
whether the requirements are
consistent, code that is old
and fragile, etc.

Product
risks

12 – (2%) Risks imposed by end users,
government regulations,
customers, product maturity,
etc.

People 38 – (7%) Turnover, geographical
location, amount of noise in
work area, number of years of
experience in the applicable
industry, number of software
people, ratio of software
developers to testers, etc.

Process 121 – (23%) Procedures, compliance, exit
criteria, standards, etc.

Technique 302 – (58%) The specific methods,
approaches and tools that are
used to develop the software.
Example: Using a SFMEA to
help identify the exceptions
that should be designed and
coded.

These are
often

overlooked

28

Techniques that effect software reliability that are often overlooked

Category Examples
Decomposition • Code a little, test a little philosophy.

• Release development/test time < 18 months long and preferably <12
months.

• Each developer has a schedule that is granular to day or week.

Visualization with
pictures and tables

A picture is worth 1000 words. Specifications with diagrams/pictures/tables
are associated with fewer defects than text.

Requirements focus Developing requirements that aren’t missing crucially important details

Testing focus/rigor Explicitly testing the requirements, design, stresses, lines of code,
operational profile

Unit testing focus Unit testing by every software engineer is mandatary and as per a defined
template. Branch coverage tools and metrics.

Defect reduction
techniques

Software fault trees, software FMEA, etc.

Design focus Designing states, sequences, timing, logic, algorithms, error handling before
coding

Regular monitoring
of the software
engineers

Monitoring software progress daily or weekly, identifying risks early, etc.

Planning ahead Planning the scope, personnel, equipment, risks before they become
problematic, planning the timing of the tasks

29

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Visualization
ranked in top
5 and is also
one of
cheapest
ways to
reduce
software
failures

30

Visualization is
augmenting words with
pictures, diagrams,
tables, etc.

State, Logic,
Timing, Data
flow, Function
Flow

Because of requirements
management tools such as DOORs,
software organizations employ “text”
based requirements.

Organizations that draw pictures or
tables as informative references have
fewer defects in testing and
operation than those who don’t

Absence of diagrams can be used to
predict specific failure modes such
as faulty state management, faulty
timing, faulty error handling, faulty
data handling, etc.

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
31

Mission Ready
Software Statistics for
various SRE capabilities

 All 100+
software/firmware
projects in Mission
Ready Software
database fall into one
of seven clusters

 Organizations with
lowest deployed
defect density were
also late less often
and by a smaller
amount

 SRE for any given
project can be
predicted by
answering a simple
survey

Cluster Outcome

Defect metrics

Late deliveries (as

per SW estimates)

Average

defects

per 1000

source

lines of

code

% defects

removed

prior to

release Fault rate

Prob

(late)

How much

project is

late by as

% of

schedule

3% World Class .0269

>75%

Steadily

decreasing
40 12

10% Successful .0644 20 25

25%

Above

average .111

40-75%

Recently

peaked or

recently

decreasing

17 25

50% Average .239 34 37

75%

Below

average .647 85 125

90% Impaired 1.119

<40%

Increasing

or peaking
67 67

97% Distressed 2.402 83 75

In the IEEE 1633 class, learn how to predict one

of these outcomes
31

These are things every world
class/successful software program
has in common in the Mission Ready
Software database
• They have at least one software engineer who understand

the product and the industry

• They don’t try to tackle too many risky things in the same
release (see next page for list of risky things)

• They have release cycles < 18 months

• They always deploy the software with a decreasing failure
rate

• They test it from mission standpoint and from a design
standpoint

• They have written software specifications, design, test
procedures which they kept up to date as things changed

• They kept track of the software defects and control over
the source code

• They aren’t overly confident about their ability to develop
the software

• They track progress against schedule from the beginning of
the release

32

These are things every
impaired/distress software program
in the Mission Ready Software
database have in common

• They don’t track progress against schedule until they are
already late

• They ship the software with an increasing failure rate

• They have < 10% of total effort in testing

• They grossly underestimate the size of the software

• They try to conquer too many learning curves in the same
release instead of spreading them out

• Software people who don’t have industry experience
• Sudden significant turnover in software engineers
• Software technology they’ve never used before
• Brand new product
• Significantly changed interfaces
• Software development tools they’ve never used
• An obsolete development environment

• They have many excuses for cutting corners but are still late
anyhow

• Track record of grossly underestimating the size of the
software

• Track record of faulty assumptions that reused code doesn’t
need to be tested or failing to reuse code when it makes
sense 33

Ball park method for predicting software MTBF
based on effort size

Size	range	in	

Man	Years	

Worst	MTBF	

at	initial	

delivery	

Average	

MTBF	at	

delivery	

Best	MTBF	

at	initial	

delivery	

Worst	

MTBF	after	

1	year	

Average	

MTBF	after	1	

year	

Best	MTBF	

after	1	

year	

1-9	MY	 117	 669	 10368	 469	 2640	 40927	

10-49	MY	 23	 134	 2074	 92	 529	 8485	

50-99	MY	 8	 45	 691	 31	 176	 2768	

100-149	MY	 5	 27	 415	 18	 106	 1637	

150-200	MY	 3	 19	 296	 13	 75	 1169	

200	MY+	 3	 15	 230	 10	 59	 909	

	

At acceptance/delivery After 1 Year of defect removal and usage
with no new features introduced

MTBEFF historically 2.5 times higher than MTBF

MTBSA historically 11.1 times higher than MTBF

High risk programs (See page 33) use the worst case column.

Low risk programs (See page 32) use the best case column.

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Overview of
software
reliability
growth models

Once the software is testable
these models can be used to
forecast future reliability

35

Any simple tool,

like Excel or JMP,

can be used to

track the

reliability growth.

Lessons learned from a real DoD program in which
SWRG models were not used

This is the fault rate from a distressed DoD software program

The contractor released the software to operational deployment before the fault rate
peaked.

That’s because no one was trending the fault rate.

More than 800 software failures were discovered by DoD after deployment.

Upon deployment, the actual system reliability was 8 % of the required reliability
objective because of the software failures.

If SWRG models had been used prior to deployment, the service would not have
accepted the software as is since the RAM goal had not been met.

0

20

40

60

80

100

120

140

160

180

Faults discovered over usage time

Software was

released here

with an

increasing fault

rate

Lessons learned from a real DoD program in which SWRG models
were used

This is the fault rate from a DoD software program

• The fault rate is clearly trending downwards

• By the end of the trend, approximately 80% of defects had been discovered

• The time between catastrophic failures was about 1600 hours as there was only 1 during the
entire usage

• The time between any serious defect was 20 hours which doesn’t meet the system objective

• There was still work to be done with regards to defect removal but the software is stable.

• The SWRG model provides confidence that the overall RAM objective can be met and the
work required to meet it

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800

N
o
n

 c
u

m
u

la
ti

v
e
 u

n
iq

u
e
 d

e
fe

ct
s

Usage time

Faults discovered over usage time

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
38

Think of SW reliability growth models as hurricane trackers

Popular but

incorrect myth

that one reliability

growth model is

always better than

another. It’s not

a competition, be

ready to use any

of them

depending on the

direction of the

reliability growth.

Reliability growth

models forecast the

direction and volume

of the failure trend

as a function of

observed failures

just as hurricane

tracking forecasts

hurricane direction

and magnitude

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
39

The closer the hurricane gets to land the smaller the cone

As with hurricane

trackers, the expense is

in the data collection.

The cost of each of

models is insignificant.

For best ROI, have a tool

that automates several

different models such as

JMP.

Software fault rates can increase, peak,
decrease or some combination

Just as there are different models for hurricanes, there are different models
for software reliability depending on the direction of the fault rate and other
factors.

The first step in SWRG modeling is to plot the faults over usage time and see
what the fault rate is.

The fault rate direction is itself a key indicator of stability. If the testing is
almost over and the fault rate is increasing – THAT’S NOT GOOD.

0

2

4

6

8

10

12
N

o
n

 C
u

m
u

la
ti

ve
 d

ef
e

ct
s

d
is

co
ve

re
d

Normalized usage period

Increasing

Peaking

Decreasing

Stabilizing

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
41

VERY SIMPLE SW
RELIABILITY GROWTH
MODEL

1. Plot the unique observed defects found
during an operational test .

2. Identify the peak. Add all defects up to an
including the month of that peak. Ex: The
peak below is at month 7 and there were 24
defects found prior to and including that
time.
• If there is no clear peak then the

release is probably not mature enough.
• If there are multiple peaks, choose the

biggest peak.

3. Multiply the result of the previous step by
2.5. Ex: 24*2.5 = 60

4. Count up the total defects found so far. Ex:
54 have been found so far.

5. Divide the total found so in step 4 far by the
total estimated in step 3. If the result < 75%
the software has not reached the minimum
% associated with a successful project.

6. If there is no visible peak then statistically <
39% of defects have been found

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Software defects found per month in
system test /operation

41

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

How SRE fits
within
Agile/Scrum
Execution

SRE works within any life cycle
model

42

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
43

Agile and incremental execution
actually make SRE easier to employ

• Failure modes effects analysis and fault tree analysis are more
effective when development is incremental/iterative

• Quantitative models work the same for incremental/iterative
development – simply apply them to each engineering cycle

• The below agile principles have been correlated to fewer defects
• Break the silos
• Deliver value frequently (smaller cycles)
• Simplest solution possible
• Regular face to face meetings between software engineers and

leads

• But our data also shows that the following bad practices (which
people justify with Agile) don’t correlate

• Using Agile principle #2 as an excuse to be overly reactive to the
loudest customer at the expense of satisfying most customers

• Using Agile principle #3 as excuse for having a poor design
• Using Agile principle #5 as an excuse to not review the product
• Using Agile principle #7 as an excuse to not fix serious defects or to

not test failure modes
• https://www.agilealliance.org/agile101/12-principles-behind-the-agile-

manifesto/

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
44

One of the most sensitive factors is release cycle

In Mission Ready
Software DB
there have been

 No successful
releases when
engineering
cycle exceeds
18 months

 All successful
releases have
<=18 month
engineering
cycle

 When the
engineering
cycle time is <=
8.5 months few
SW projects fail

44

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90

D
EP

LO
Y

ED
 D

EF
EC

T
D

EN
SI

TY

MONTHS OF DEVELOPMENT/TEST TIME FOR RELEASE

Engineering cycle time versus defect
density

Successful Mediocre Distressed

SWRG Model Goals aren’t dramatically different
for Agile/Incremental versus Waterfall
development

Agile/Incremental sprints

• Goal #1 – Verify that the fault
rate is decreasing before adding
any more code

• Goal #2 – Predict the total
number of defects to ensure at
least 75% discovery prior to
adding any new code

• Goal #3 – Predict the failure
rate/MTBF to ensure that
system failure rate/MTBF goal
can be met

Final Agile/Incremental Release or
Waterfall Model Release

• Goal #1 – Verify that the fault
rate is decreasing before final
deployment

• Goal #2 – Predict the total
number of defects to ensure at
least 75% discovery prior to final
deployment

• Goal #3 – Predict the failure
rate/MTBF to ensure that
system failure rate/MTBF goal is
met

Agile/Incremental versus Waterfall

Agile/Incremental

• Smaller cycles called sprints

• A sprint can be a “release” but
typically isn’t released to
operation

• Duration of a sprint can be
weeks or months

• Several sprints lead to a final
release

• Requirements, design and code
evolve

Waterfall

• One big release

• No interim sprints

• Duration of development cycle
is often fairly long (i.e. several
months or years)

• Requirements are cast in stone
before design or code begins

How to apply SWRG models within a sprint

Go through same process shown in this presentation for each
sprint

Capture the defect metrics by originating sprint if possible. In other
words

• If a defect found in testing was introduced in sprint 1 but found in sprint 2 it’s part
of the sprint 1 dataset

• The software engineers who fix the defects know which sprint it was introduced in.
The SCR system will need to have a field to identify this information.

Generate a trend and growth model for each sprint and final sprint
to ensure

• The fault rate isn’t increasing prior to adding in more code

• The estimated number of remaining defects won’t lead to defect pileup

• The fault rate is trending towards a final failure rate that meets the objectives

Example
• The sprints last 3 months of which one month is testing. The faults per usage day are plotted

over total usage time. The defects found in sprint 2 testing are separated so that those
introduced in sprint 1 during sprint 2 testing are trended with sprint 1.

• Sprint 1 faults were decreasing at time 199 when the next sprint was released to testing

• However, faults from sprint 1 spilled into the test effort for sprint 2

• The faults for sprint 2 has just peaked at the end of the testing for that sprint

• At this rate, sprint 3 is not likely to have a decreasing failure rate by the time sprint 3 testing is
over. That means that the final sprint isn’t on track for a decreasing failure rate as per it’s
scheduled end of test.

• Conclusions – there isn’t enough test effort for each sprint to sustain stable software by the
final sprint

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400

Faults over usage time

Sprint 1

Sprint 2

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
49

References

• [8] “The Cold Hard Truth About Reliable
Software, Edition 6h”, A. Neufelder,
SoftRel, LLC, 2018

• [9]Four references are
a) J. McCall, W. Randell, J. Dunham, L.

Lauterbach, Software Reliability,
Measurement, and Testing Software
Reliability and Test Integration RL-TR-
92-52, Rome Laboratory, Rome, NY,
1992

b) "System and Software Reliability
Assurance Notebook", P. Lakey, Boeing
Corp., A. Neufelder, produced for Rome
Laboratory, 1997.

c) Section 8 of MIL-HDBK-338B, 1
October 1998

d) Keene, Dr. Samuel, Cole, G.F. “Gerry”,
“Reliability Growth of Fielded
Software”, Reliability Review, Vol 14,
March 1994.

49

http://www.softrel.com/notebook.zip

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Backup slides

Definitions

50

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
51

Software
reliability as
per IEEE/ ISO
standards

Metric: 1) Probability of success of the software over
some specified mission time. 2) Degree to which a
system, product or component performs specified
functions under specified conditions for a specified
period of time

Also used to describe an entire collection of software
metrics or the overall maturity of the software.

A function of

• Inherent defects which is a function of

• Development and test factors

• Product maturity

• Organization and experience in industry

• Inherent risks

• Process

• Operational profile

• How the software is used (mission profile)

• Duty cycle

• Number of install sites/end users

51

Errors, defects,
faults and

failures

• Errors – This term is used incorrectly quite often. It
is simply the human mistake made by the software
engineer(s) when constructing the code.

• Example – the software engineer forgets that
dividing can cause an overflow when the
denominator approaches zero.

• Defects – This is the manifestation of that mistake
into the code.

• Example – the software engineer writes the
code a = b/c but doesn’t have any checking for c
approaching zero

• Fault – This is a defect that has been exercised
during runtime. If there is fault handling the fault
may not become a failure.

• Example – During runtime c approaches zero
and there is an overflow

• Failure – This is when a fault results in the system
requirements not being met.

• Example – The software is unable to perform
it’s function because of the overflow.
Depending on the system design it might crash.

52

Copyright Softrel, LLC 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

More information

Software reliability and software FMEA training courses

Software reliability prediction tools

Software FMEA tools

Software reliability services

https://missionreadysoftware.com

sales@missionreadysoftware.com 53

https://missionreadysoftware.com/
mailto:sales@missionreadysoftware.com

