

Improving Reliability through Failure Classification: Possible Implementation Paths

K. Loveday Glandon, Casey Eaton, Bryan L. Mesmer, PhD

Introduction

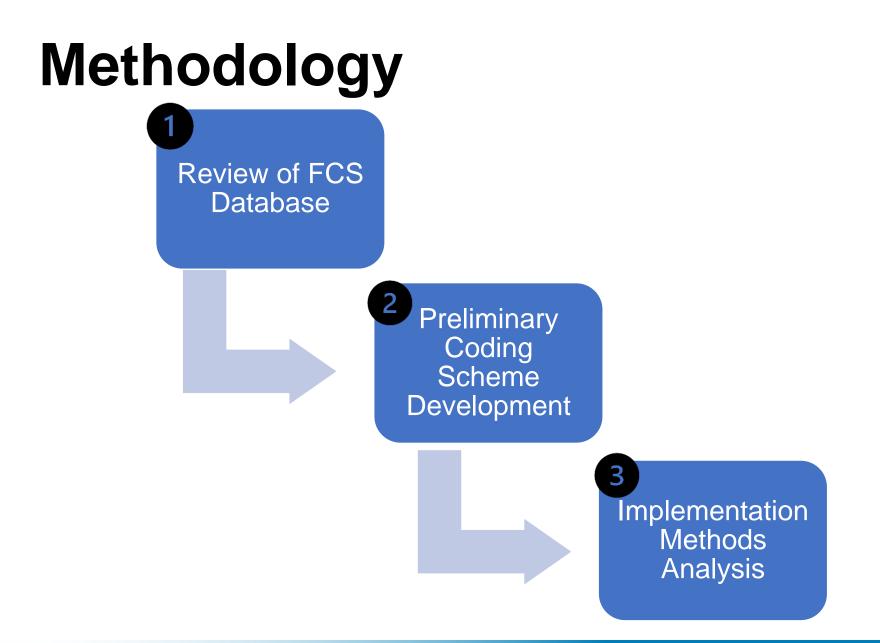
- What is a failure classification scheme (FCS)?
 - "Failure classification schemes are systematic categorizations of failures. Schemes often categorize failures into the factors that cause failure or the types of failure." [1]

What do we mean by Implementation?

- "the act of making something that has been officially decided start to happen or be used"[2]
- **Long-Term Goal:** Implementation of a comprehensive Failure Classification Scheme into NASA using digital engineering to prevent, detect, and ideally even predict failures.

Long-Term Goal

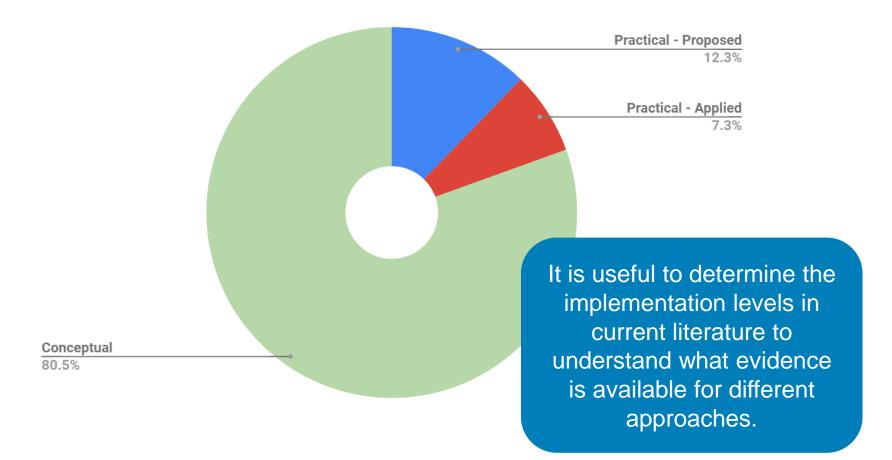
BLOOM'S TAXONOMY ANALYZING **EVALUATING** CREATING Using Implementation **USE INFO TO CREATE** CRITICALLY EXAMINE INFO TAKE INFO APART & SOMETHING NEW & MAKE JUDGEMENTS **EXPLORE RELATIONSHIPS** of FCS to affect design, build, judge, critique, test categorize, examine, outcomes organize, plan, construct, defend, criticize produce, devise, invent compare/contrast APPLYING USE INFO IN A NEW (BUT SIMILAR) FORM Forming Failure use, diagram, make a chart, Classification Scheme draw, apply, solve, calculate UNDERSTANDING **UNDERSTANDING & MAKING SENSE** OUT OF INFO interpret, summarize, explain, **Understanding Failure** infer, paraphrase, discuss Factors through Research REMEMBERING FIND OR REMEMBER INFO list, find, name, identify, locate, describe, [3] memorize, define



Research Questions

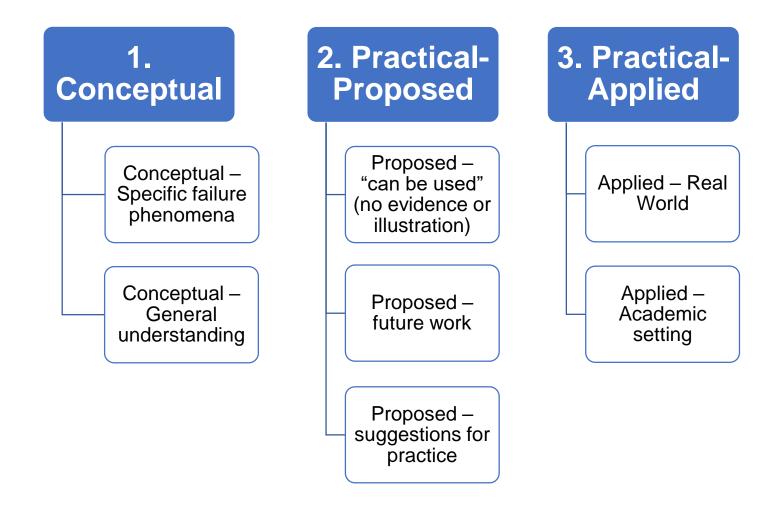
R1: In a collection of academic literature concerning Failure Classification Schemes, to what extent are they being implemented and how?

R2: What possible implementation paths can be identified to inform future work?


FCS Literature Category Definitions

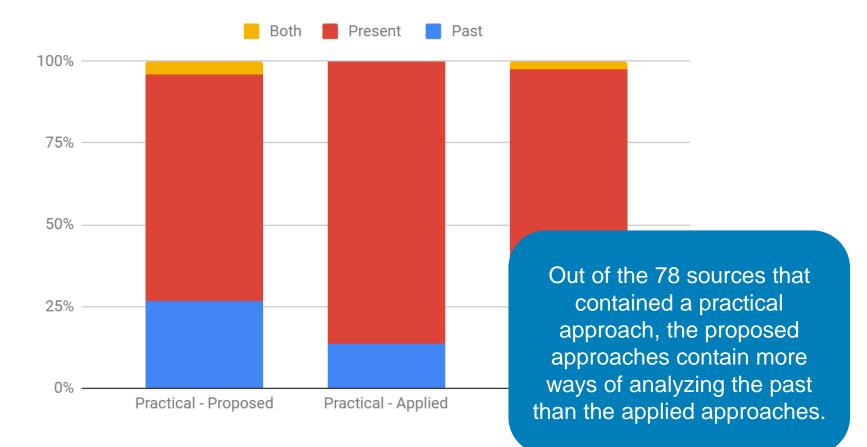
Level 1: Conceptual

- Example:
 - "The primary focus is to address the various issues responsible for IT projects failure to **understand the root causes** of the failure." [4]



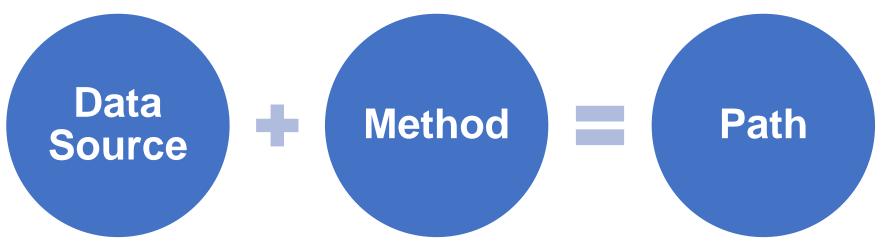
FCS Database Initial Result Distribution

Determined Sub-Categories



Implementation Path Considerations

- Who is involved?
- When is it used?
- What data is needed, how is it collected?
- What tools are needed?
- What type of failure is addressed?



How many practical approaches analyze past data vs. current data?

Possible Implementation Paths

- Database of failure reports
- Survey/Questionnaire
- User Tagging
- Enterprise System Data
- System Data

- Categorization
- Statistical Analysis
- Machine Learning Algorithms
- MBSE
- Step by Step

Example 1

Source Title	"Common-Cause Failure Database and Analysis System: Event Data Collection, Classification, and Coding" [7]		
Implemented How?	Used in U.S. commercial nuclear power industry to assess trends + common causes of failures, probabilistic risk assessment for future based on past		
Implementation Level	Applied – Real World		
Failure Domain	Equipment and plant failures		
Data Input	Failure/reliability reports of past failures and events		
Possible Limitations	Not all reports created equal, subset of failure types, database creation		

Possible Implementation Paths

- Database of failure reports
- Survey/Questionnaire
- User Tagging
- Enterprise System Data
- System Data

- Categorization
- Statistical Analysis
- Machine Learning Algorithms
- MBSE
- Step by Step

Example 2

Source Title	"Data Science Approaches to Prevent Failure in Systems Engineering" [8]
Implemented How?	Machine learning on data, app to crowd-source + track project risk and predict failures
Implementation Level	Applied – Academic Setting, college data
Failure Domain	Project Risk, SE Failures
Data Input	Present, continuous. Enterprise Software Data + weekly questionnaires
Possible Limitations	Data Availability

Possible Implementation Paths

- Database of failure reports
- Survey/Questionnaire
- User Tagging
- Enterprise System Data
- System Data

- Categorization
- Statistical Analysis
- Machine Learning Algorithms
- MBSE
- Step by Step

Example 3

Source Title	"Applying STAMP in Accident Analysis" [9]
Implemented How?	MIT developed and tested, training seminars, to determine aspects of system structure that lead to failure, recommendations for prevention
Implementation Level	Applied – Real World
Failure Domain	Accident/Event investigation + analysis
Data Input	Modeling system based on past accident reports, trained analysts
Possible Limitations	Training, rigorous, not all reports created equal

Note on Failure Domains:

The way each Failure Domain assesses failure differs in data input, measurement, and goals..

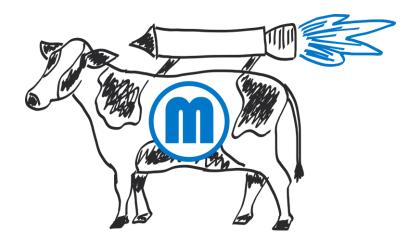
• How to Unify for a System?

Failure Domain Comparison

Title	"A categorization technique for resolving information system failures reasons" [10]	"Project Risk Management: A combined analytical hierarchy process and decision tree approach" [11]	"Implementation of a Goal- Based Systems Engineering Process Using the Systems Modeling Language (SysML)" [12]
Implemented How?	Company using technique during potential failure reason exploration, mapping project to categories and potential failure categories	Steps using analysis of AHP and Decision Tree	Used for NASA project in SysML
Failure Domain	Information system failure reasons	Risk management	SE failure analysis + coverage, failure scenarios
Data Input	Current project, team evaluation	SMEs + management, project data	System Model creation, continuous system data

Conclusions

- R1: In a collection of academic literature concerning Failure Classification Schemes, to what extent are they being implemented and how?
 - Different levels of implementation
 - Evidence varies at different levels
- R2: What possible implementation paths can be identified to inform future work?
 - A complete path can consist of combinations between methods and data sources
 - It may also need different methodologies for different types of failure


Future Work

- A second pass of the failure classification scheme database will be completed for further analysis
- Possible Implementation Formations will continue to be developed and explored throughout the literature
- As potential paths are developed, pros and cons as well as ways to measure and realize them will also be identified.

Questions?

- klg0045@uah.edu
- Mesmer Research Group

References

[1] C. Eaton, A. Banks, B. Mesmer, and K. Weger, "A Review of System Failure Classification Schemes," in AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2020-0706.

[2] "implementation noun - Definition, pictures, pronunciation and usage notes | Oxford Advanced Learner's Dictionary at OxfordLearnersDictionaries.com." <u>https://www.oxfordlearnersdictionaries.com/us/definition/english/implementation</u> (accessed Nov. 17, 2021).

[3] S. B. A., "Using Bloom's Taxonomy for Effective Learning," *ThoughtCo*. <u>https://www.thoughtco.com/blooms-taxonomy-the-incredible-teaching-tool-2081869</u> (accessed Nov. 17, 2021).

[4] W. Al-Ahmad, K. Fagih, K. Khanfar, K. Alsamara, S. Abuleil, and H. Abu-Salem, "A Taxonomy of an IT Project Failure: Root Causes," vol. 76, Jan. 2009.

[5] D. B. Khang and T. L. Moe, "Success Criteria and Factors for International Development Projects: A Life-Cycle-Based Framework," *Project Management Journal*, vol. 39, no. 1, pp. 72–84, Mar. 2008, doi: 10.1002/pmj.20034.

[6] M. R. Mehregan, M. Jamporazmey, M. Hosseinzadeh, and A. Kazemi, "An integrated approach of critical success factors (CSFs) and grey relational analysis for ranking KM systems," *Procedia - Social and Behavioral Sciences*, vol. 41, pp. 402–409, Jan. 2012, doi: <u>10.1016/j.sbspro.2012.04.048</u>.

[7] "Common-Cause Failure Database and Analysis System: Event Data Collection, Classification, and Codin," *NRC Web*. <u>https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6268/index.html</u> (accessed Nov. 17, 2021).

[8] K. Marais, B. Ribeiro, G. Georgalis, and L. de Abreu Cotta, "Data Science Approaches to Prevent Failure in Systems Engineering," Purdue University SYSTEMS ENGINEERING RESEARCH CENTER HOBOKEN NJ, Jun. 2019. Accessed: Nov. 17, 2021. [Online]. Available: https://apps.dtic.mil/sti/citations/AD1075118

[9] N. G. Leveson, M. Daouk, N. Dulac, and K. Marais, "Applying STAMP in Accident Analysis," Massachusetts Institute of Technology. Engineering Systems Division, Working Paper, Jun. 2003. Accessed: Nov. 17, 2021. [Online]. Available: <u>https://dspace.mit.edu/handle/1721.1/102905</u>

[10] S. Zahran and G. Galal-Edeen, "A Categorization Technique for Resolving Information System Failures Reasons," *International Journal of Electrical & Computer Science IJECS-IJENS*, vol. 12, pp. 72–82, Jan. 2012.

[11] P. Dey, "Project risk management: A combined analytic hierarchy process and decision tree approach," *Cost Engineering (Morgantown, West Virginia)*, vol. 44, Jan. 2002.

[12] J. T. Breckenridge, S. B. Johnson, and J. Patterson, "Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)," presented at the AIAA Infotech@Aerospace (I@A) Conference, Boston, MA, Aug. 2013. doi: 10.2514/6.2013-4577.

