

Expectation vs. Reality

The Sunrise Problem Applied to Probabilistic Risk Assessment

November 2022 Joseph Osowski, QD35, Bastion Technologies

Introduction

- The "problem": What is the probability that the sun will rise tomorrow?
- Evaluation of the sunrise problem shows the difficulty of using statistics for certain applications.
- When applied to Probabilistic Risk Assessment (PRA), the sunrise problem illustrates a pitfall that analysts should recognize and avoid, when possible.

- Introduction to the Sunrise Problem
- Further Statistical Analysis
- Expectation vs Reality
- Application to PRA
- Other Applications
- Avoiding the Pitfalls
- Summary

Introduction to the Sunrise Problem

- First introduced by Pierre-Simon Laplace.
- Given no prior information on the frequency of sunrises *p*, Laplace noted that a uniform probability distribution should be used and informed using observations.
- Applying Bayes' rule, a conditional probability can be shown as:

Pr(Sun rises tomorrow | It has risen
$$k$$
 times previously) =
$$\frac{\int_0^1 p^{k+1} dp}{\int_0^1 p^k dp} = \frac{k+1}{k+2}$$

Observations (years)	Observations (days)	Pr(Sunrise)	Pr(No sunrise)	"1 in" Days	"1 in" Years
28	10,220	0.999902	9.78E-05	10,222	28.01
80	29,200	0.999966	3.42E-05	29,202	80.01
1000	365,000	0.999997	2.74E-06	365,002	1,000.01
5000	1,825,000	0.999999	5.48E-07	1,825,002	5,000.01

Further Statistical Analysis

- Alternatively, could update a Jeffreys Prior beta distribution with observations.
 - Common method used to estimate failure probability of a binomial (pass/fail) variable.
 - Essentially adds ½ of a failure and ½ of a success to observed data.
 - Alpha= Failures + ½, Beta = Successes + ½
- Pr(Sun rises tomorrow | It has risen k times previously) described by Beta $\left(\frac{1}{2}, \frac{1}{2} + k\right)$

Observations (years)	Observations (days)	Pr(Sunrise) (median)	Pr(No sunrise)	"1 in" Days	"1 in" Years
28	10,220	0.999978	2.23E-05	44,931	123
80	29,200	0.999992	7.79E-06	128,371	351
1000	365,000	0.999999	6.23E-07	1,604,621	4,396
5000	1,825,000	1.000000	1.25E-07	8,023,101	21,981

Expectation vs Reality

- The sunrise problem, and attempts to "solve" it, show a dichotomy between what raw statistics predict and what we "know" to be true: the sun will continue to rise.
- Some factors contributing to this dichotomy include:
 - Reference class problem.
 - Attempts to predict a low-probability event far in the future.
 - Improper assumptions.
 - Statistical solutions do not include the bulk of our prior knowledge.
- Laplace recognized these shortcomings:

But this number [the probability of the sun coming up tomorrow] is far greater for him who, seeing in the **totality of phenomena** the principle regulating the days and seasons, realizes that nothing at the present moment can arrest the course of it.

Application to PRA

Similar problems can arise in the reliability/PRA realm when analyzing failure risk.

Example:

A small boat manufacturer wants to know the probability that a rivet fails, creating a hole that could sink their boats.

Each boat uses 600 rivets, and the manufacturer has already built 6 boats with no occurrences of this failure.

Use Jeffrey's prior & Beta distribution:

Alpha = $0 + \frac{1}{2} = \frac{1}{2}$ Beta = $600*6 + \frac{1}{2} = 3600.5$

Pr(single rivet failure) = 6.32E-05 Pr(at least 1 rivet failure on a boat) = **0.037**

Application to PRA (cont.)

- Is this high (1 in 26) failure probability reasonable? Does the probabilistic expectation match reality?
- Factors contributing to the analysis' shortcomings:
 - Reference class problem.
 - Should more data be used from similar designs outside of the manufacturer history?
 - Extrapolating a low-probability event.
 - Low risk when looking at a single rivet, but risk increases due to the large number of rivets on each boat.
 - Improper assumptions.
 - Can we treat rivet failures as independent/random?
 - Statistical solution does not include the bulk of our prior knowledge.
 - Is the failure even possible barring external events? Has material strength/failure physics been analyzed?

Other Applications

- The shortcomings that the sunrise problem illustrates can be found in various other types of statistical analyses:
- Probabilistic Risk Analysis.
 - Shown in earlier example.
 - Similar outcomes may arise when analyzing long-duration reliability.
- Population estimates.
 - Extrapolating small local populations across large areas can be highly inaccurate.
- Predictions of weather or geological events.
 - Limited accuracy and obvious flaws of predictions across different locations or long time periods.

Avoiding the Pitfalls

- Failing to recognize (or explain) a sunrise problem can lead to faulty assessments and loss of trust in PRA methodologies.
- Risk analysts should notice the "warning signs" of a sunrise problem:
 - Low probability failure events evaluated over long durations or many points of failure.
 - Risk estimations of failures that have no history of occurrence.
 - Unexpectedly high risk of system failure compared to failure history.
 - Simplified failure criteria used to streamline statistical analysis (pass/fail).
- Most shortcomings can be addressed by taking a wider view of the analysis.
 - Does the result pass the "sanity check"?
 - What actually causes the failure to occur?
 - Can more/better data be used as an input?
 - Can extrapolation be limited?

BASTION TECHNOLOGIES

Summary

- At its core, the sunrise problem illustrates a notable misapplication of statistical prediction methods.
- PRA analyses similar to the sunrise problem often result in unusually high risk and typically occur when there is a combination of:
 - Limited data.
 - Many potential points of failure.
 - Low failure probabilities.
 - Misunderstood failure requirements.
- Occurrences of such problems in a risk assessment should be reviewed for these shortcomings and overall plausibility. Assessments may be improved with the addition of:
 - Additional physics/material properties analysis.
 - Additional historical data.
 - Limited analysis scope and acknowledgement of shortcomings.

POC & References

- Joseph.J.Osowski@nasa.gov
 - 256-961-0751
- E.T. Jaynes, *Probability Theory: The Logic of Science*, 2003.
- Additional information can be found on Wikipedia:
 - https://en.wikipedia.org/wiki/Sunrise_problem
- Images from Excel stock image library