

Applied Predictive Analytics to Evaluate Centrifugal Pumps

Reliability, based on Hydraulic Operation Regions

Prepared by:

Ernesto Primera, B.S., M.S. Machinery Reliability Engineer

PhD Candidate – University of Delaware

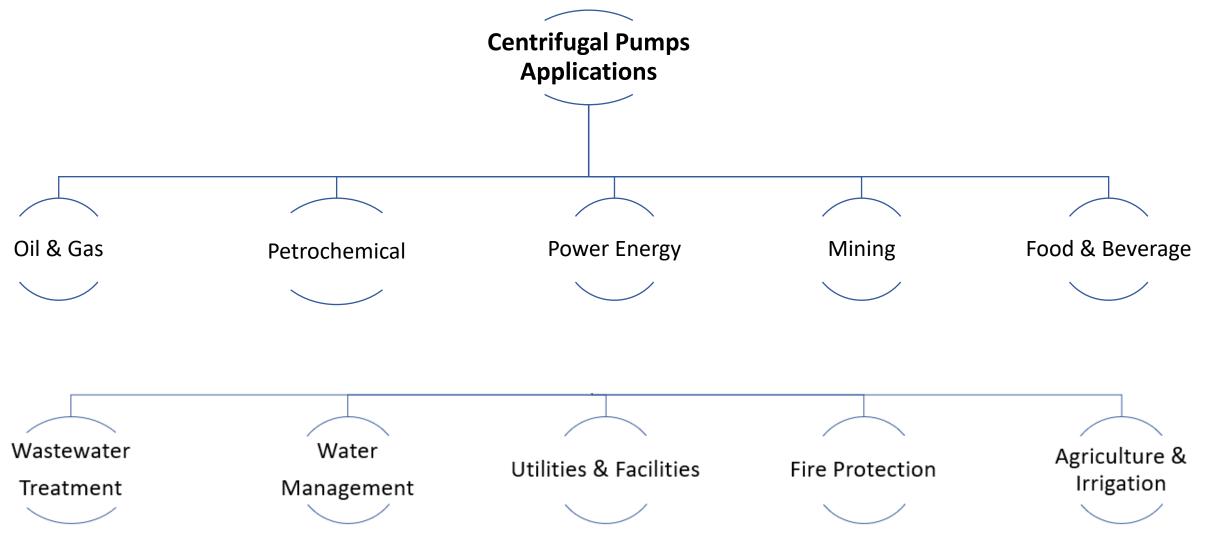
Phone: 713 410 9538 Email: eprimera@udel.edu

Ernesto Primera

Mechanical/Maintenance Engineer with 20 years of experience in Rotating Machinery, Condition Monitoring, Performance Analysis, and Reliability Evaluations. Experience in the Oil and Gas Industry, Power Plants and OEMs. A passionate about Data Analysis using technology platforms such as: R Studio, SAS, Minitab, SPSS Statistic & Modeler, Risk Simulator, @Risk, MS Power BI, and Tableau. Proven experience as employed for Chevron, Phillips-66, Williams, Flowserve and SKF. During the last 10 years Ernesto have worked in the Rotating Machinery Reliability Group at the Pascagoula Refinery in Mississippi (CHEVRON) and Lake Charles Refinery and Alliance Refinery in Louisiana (PHILLIPS-66). Global Instructor for the American Society of Mechanical Engineers (ASME), Industry Partner and Instructor for the Hydraulic Institute, certified Maintenance & Reliability Professional CMRP, Certified Vibration Analyst Category III by the Technical Associate of Charlotte. Bachelor's Degree in Maintenance Engineering (University Complex AJS - Venezuela), Master's degree in Predictive Maintenance & Diagnostics Technique (Sevilla University - Spain), Master's degree in business Analytics (Grand Canyon University) and currently studying PhD in Applied Statistics in the University of Delaware. Ernesto is currently a SRE Lifetime National Member.

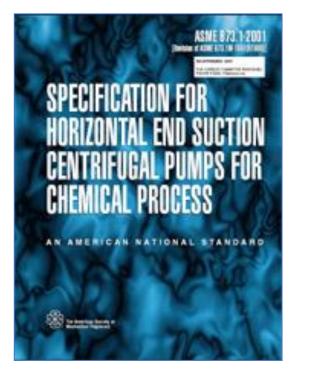
Content

- 1. Background.
- 2. Pumps Applications
- 3. Pumps Industry Standards.
- 4. Centrifugal Pump Typical Hydraulic Curve.
- 5. Problem Statement.
- 6. Previous Research
- 7. Pumps Life Cycle Cost
- 8. Centrifugal Pumps Reliability.
- 9. New Research Purpose
- 10. Development of the Research Project.
- 11. Research Project Conclusion

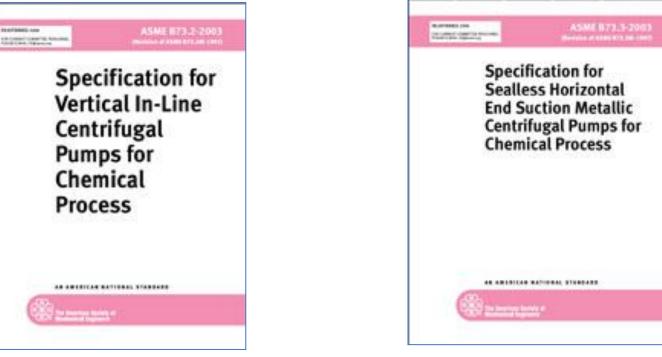

Background

• Pumping systems are undoubtedly one of the main equipment that is part of the global industry, with an emphasis on the water industry, the global sales revenue from the deployment of pumps represented US \$ 34.39 Billion at the end of 2016 and is projected to reach a market value of US \$ 49.40 Billion by 2024 [Persistence, 2021]. Therefore, it the importance of aligning scientific research, technological advances, resources, and efforts of science towards improving the reliability of the equipment with the greatest global presence in productive industrial systems and in the management of our waters.

Pumps Applications


2022 RAM XIV Training Summit

Prepared by: Ernesto Primera

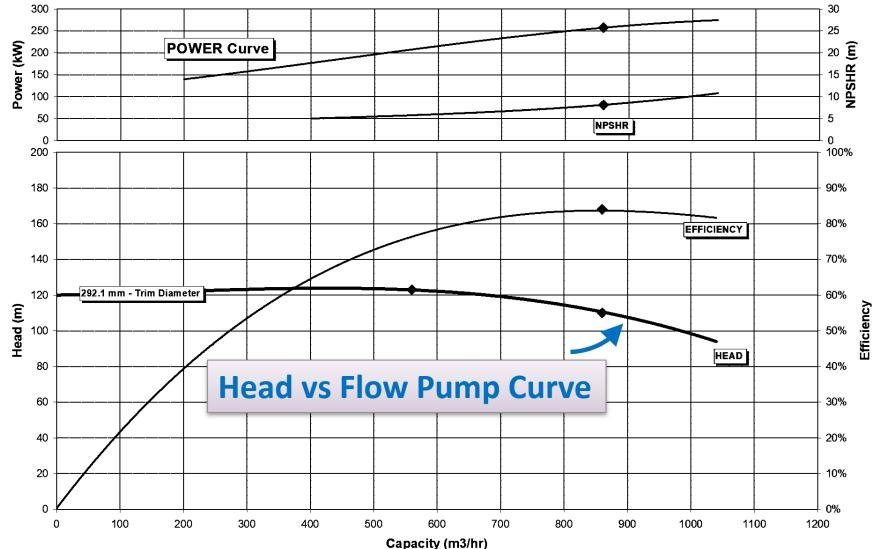


Pumps Industry Standards

ASME B73.1 - 2001 Specification for Horizontal End Suction Centrifugal Pumps for Chemical Process

ASME B73.2 - 2003 Specifications for Vertical In-Line Centrifugal Pumps for Chemical Process ASME B73.3 - 2003 Specification for Sealless Horizontal End Suction Metallic Centrifugal Pumps for Chemical Process

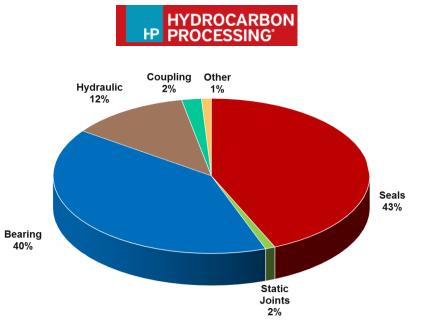
Pumps Industry Standards

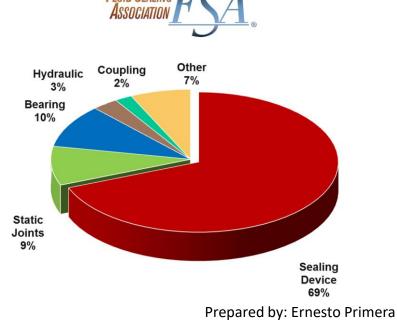


Prepared by: Ernesto Primera

Centrifugal Pump Typical Hydraulic Curve

2022 RAM XIV Training Summit


Prepared by: Ernesto Primera

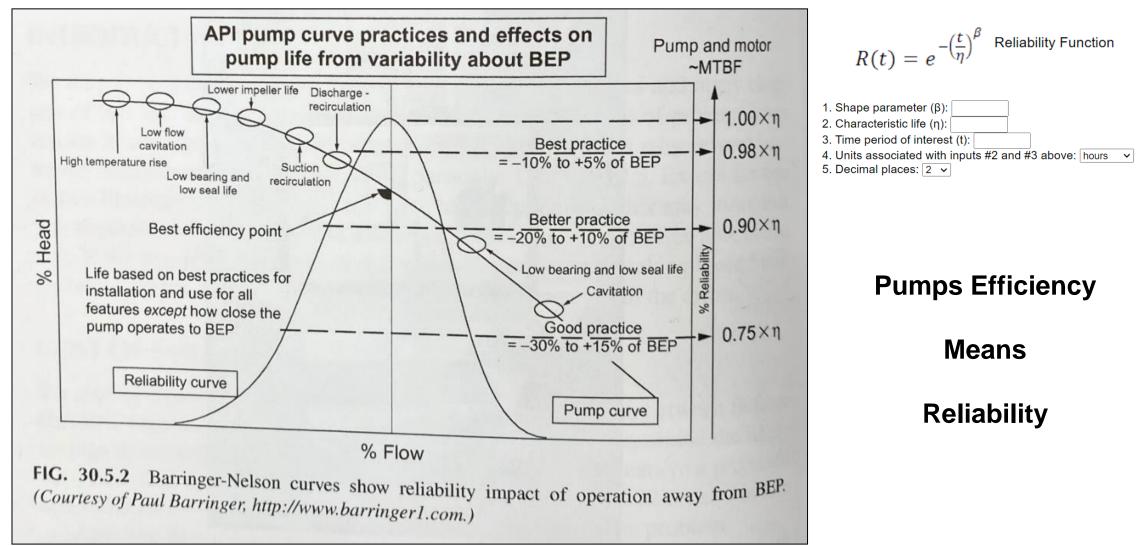


Problem Statement

 The unexpected pumping systems failures in the fluid handling circuits in their different global services are the cause of the quality and efficiency of services decrease, it also impacts of the business profitability, due to rework, overtime, and high costs for repairs. We can also add a high amount of waste of fluids such as water, and spills of industrial fluids that directly impact our environment.

10 Years of Reliability Data on Centrifugal Pumps in the U.S.A. Industry and its Typical Causes of Failures

2022 RAM XIV Training Summit



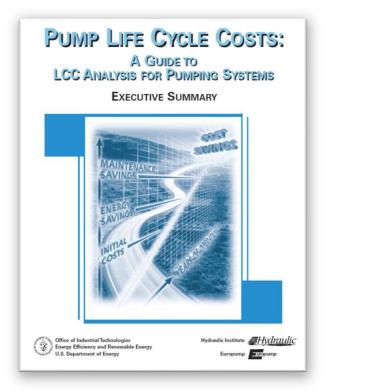
Previous Research

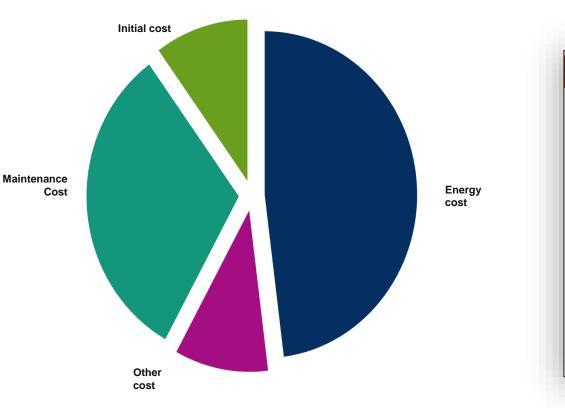
- Over the years, the industry and pump manufacturers have implemented preferred operating windows to operate their pumping systems, with the aim of reducing the probability of failures and reducing unnecessary energy consumption.
- Researchers and SMEs like H. Paul Barringer and Heinz P. Bloch have concluded that operating the pumps close to their Best Efficiency Point (BEP) is the key to maintaining desired reliability, as shown in the next slide.

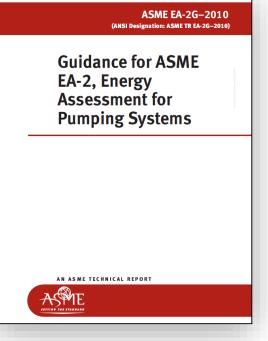
Previous Research

Pump Curve – Reliability Impact of Operation away from BEP

2022 RAM XIV Training Summit


Source: Hydraulic Institute "Reliability of Pumping Equipment" p.64, and Heinz P. Bloch "Petrochemical Machinery Insights" p. 454


RAM



Pumps Life Cycle Cost

Centrifugal Pumps Reliability

Machinery info	MTTF					
Description	OREDA 2009	PERD	Paul Barringer	OREDA 2002	Heinz Bloch	MTTF (yrs)
Multistage Centrifugal Pump	2,78	3,76	3,99	1,58	2,00	2,82

OREDA: The Offshore and Onshore Reliability Data project

ESReDA: European Safety, Reliability & Data Association

PERD: Process Equipment Reliability Database. CCPS (Center for Chemical Process Safety)

 $R(t) = e^{-\left(rac{t}{\eta}
ight)^{eta}}$ Reliability Function

Eta(n)

Centrifugal Pumps Reliability

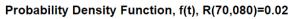
Reliability, R(t)

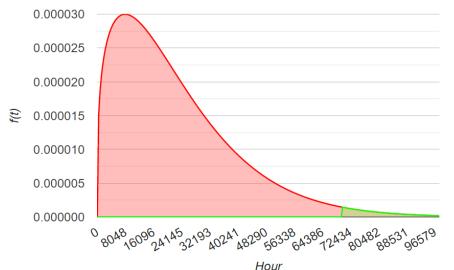
For Bearings, based on H. Paul Barringer Failures Database

Shape parameter (β): **1.30** Characteristic life (η , hours): **24,528** Time period of interest (t, hours): **70,080**

1.0 7,665 h \approx 80% Reliability 0.8 0.6 0.4 0.2 0.0 8048,6096,4145,32 0 Hour

04, 882, 962,


Source: Reliability Analytics Corporation

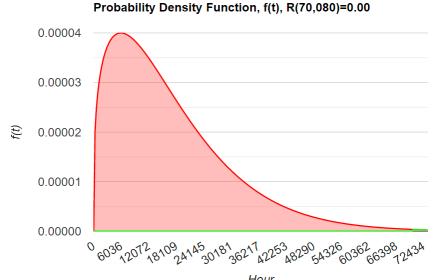

R(t)

Inputs:

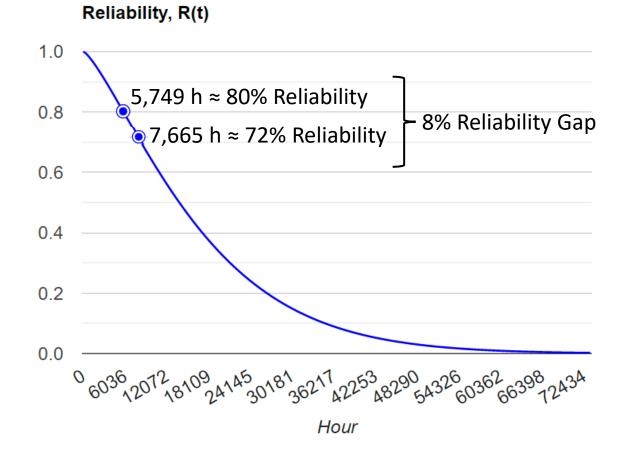
Solution:

Mean life = $\eta \propto \Gamma(1 + 1/\beta)$ Mean life = 24,528 x $\Gamma(1.77)$ = **22,658** hours

2022 RAM XIV Training Summit


Centrifugal Pumps Reliability

Inputs:


75% of Eta(η) Shape parameter (β): **1.30** Characteristic life (n, hours): 18,396 Time period of interest (t, hours): 70,080

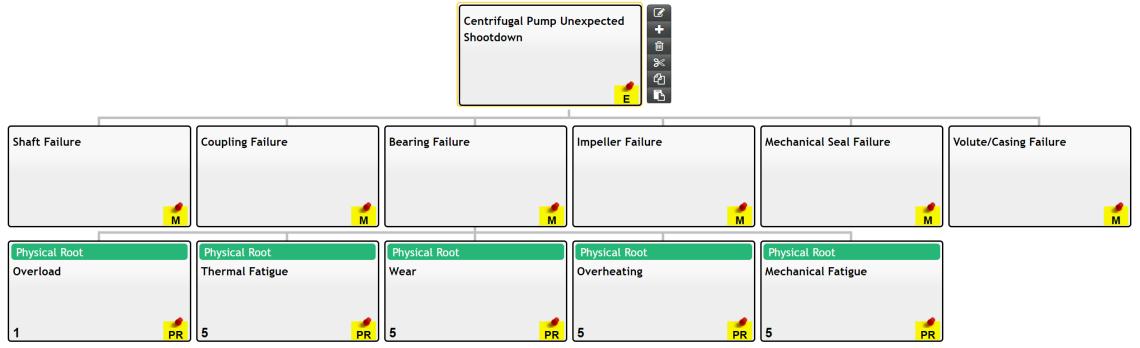
Solution:

Mean life = $\eta \propto \Gamma(1 + 1/\beta)$ Mean life = $18.396 \times \Gamma(1.77) = 16.994$ hours

Hour

7,665 - 5,749 = 1916 h (≈80 days)

R(t)


Centrifugal Pumps Reliability

We can say that the unexpected shootdown of a centrifugal pump is attributable to the failure of its main components

(Maintainable Items), as described in the fault logic tree. Exploring one of the failure modes (bearing failure); We can observe

that the physical causes or degradation mechanisms can originate from subjecting the pump to high mechanical vibrations,

for this reason, we will use mechanical vibrations as a condition that generates potential failures of the main components.

2022 RAM XIV Training Summit

Source: Reliability Center Inc. PROACT® RCA Methodology and Software

Prepared by: Ernesto Primera

Research Purpose

- The objective of this project was to identify which operating variables had the greatest effect on pump reliability in terms of mechanical condition (Vibration), and thus validate the hypotheses of the previous research by Barringer and Block, and directly identify the operating variable that most affects pump vibration.
- We developed the case of a 10-stage high-energy pump.
- For the project, 19,755 data are available for each variable, collected over one year in 2021.
- Overall, we wanted to identify the most important factors that influence pump reliability and find the levels of these that maximize pump reliability.

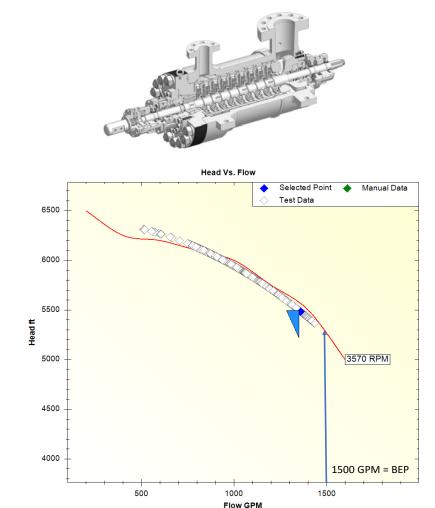
Development of the Research Project

For this project, we used four variables that are considered relevant to pump performance in terms of influence mechanical condition (Vibration):

- Discharge Pressure in PSIG.
- Discharge Flow in gallons/min (gpm)
- Discharge Temperature in •F.
- Driver (Electric Motor) current consumption in Amps.

For the validation of the results obtained in the previous research, we used 3 steps:

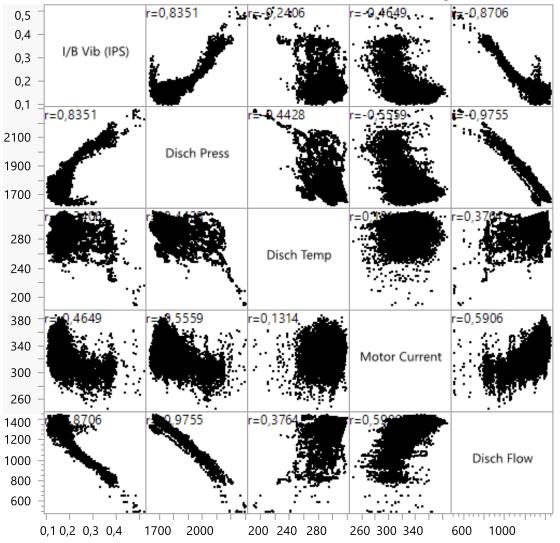
1st Step: Dataset review


- 2nd Step: Correlation Analysis
- 3rd Step: Multiple Linear Regression Analysis

Development of the Research Project

1st Step: Dataset review

Disch Press	⊿ ■ Disch Flow	⊿ 💌 Disch Temp	⊿ 🗷 Motor Current	
2300	1400	320		
2200		300	380	
	1200		360	
2100	1200	280	340	
2000	L (#)	260	340	
	1000		320	
1900	1 1	240 -	300	
1800	800		7	
		220 -	280	
1700	600 -	200 -	260 -	
⊿ Quantiles	⊿ Quantiles	⊿ Quantiles	⊿ Quantiles	
100.0% maximum 2289.471	100.0% maximum 1435.903	100.0% maximum 318.0246	100.0% maximum 384.5304	
99.5% 2139.2159	99.5% 1422.7538	99.5% 314.74821	99.5% 369.18885	
97.5% 2090.2143	97.5% 1401.9763	97.5% 311.81847	97.5% 359.77039	
90.0% 1952.8206	90.0% 1383.4182	90.0% 308.75854	90.0% 348.8423	
75.0% quartile 1818.107	75.0% quartile 1351.706	75.0% quartile 304.3716	75.0% quartile 339.1513	
50.0% median 1761.745	50.0% median 1300.663	50.0% median 295.083	50.0% median 328.664	
25.0% quartile 1721.259	25.0% quartile 1243.245	25.0% quartile 284.5545	25.0% quartile 316.597	
10.0% 1690.6964	10.0% 1082.8504	10.0% 273.30998	10.0% 305.48118	
2.5% 1674.2018	2.5% 861.8526	2.5% 261.29368	2.5% 293.33461	
0.5% 1657.8788	0.5% 811.06125	0.5% 249.8576	0.5% 279.95205	
0.0% minimum 1632.119	0.0% minimum 510.6045	0.0% minimum 190.1906	0.0% minimum 248.7921	
Summary Statistics	Summary Statistics	⊿ Summary Statistics	Summary Statistics	
Mean 1790.3381	Mean 1270.0117	Mean 292.80722	Mean 327.75747	
Std Dev 103.99294	Std Dev 127.29591	Std Dev 14.130399	Std Dev 16.99686	
Std Err Mean 0.7398869	Std Err Mean 0.9056824	Std Err Mean 0.1005347	Std Err Mean 0.1209289	
Upper 95% Mean 1791.7884	Upper 95% Mean 1271.7869	Upper 95% Mean 293.00427	Upper 95% Mean 327.9945	
Lower 95% Mean 1788.8879	Lower 95% Mean 1268.2365	Lower 95% Mean 292.61016	Lower 95% Mean 327.52044	
N 19755	N 19755	N 19755	N 19755	


Development of the Research Project

2nd Step: Correlation Analysis

We calculated the partial correlations of the model and their respective scatter plots.

We can see that there is a significant correlation between the variables "Disch Press" and "Disch Flow" with the response variable "I/B Vib (IPS)".

It is important to mention that the correlation between the variables " Disch Press " and " I/B Vib (IPS)" is positive and high (p-value= 0.8351), while the correlation between the variables " Disch Flow " and " I/B Vib (IPS)"." is inverse and high (p-value = -0.8706).

Scatterplot Matrix



Development of the Research Project

2nd Step: Correlation Analysis

On the other hand, analyzing the scatter plots, we can say that for the first case, an increasing relationship between discharge pressure and the vibration is shown, that is, when discharge pressure

increases, vibration also increases. radial.

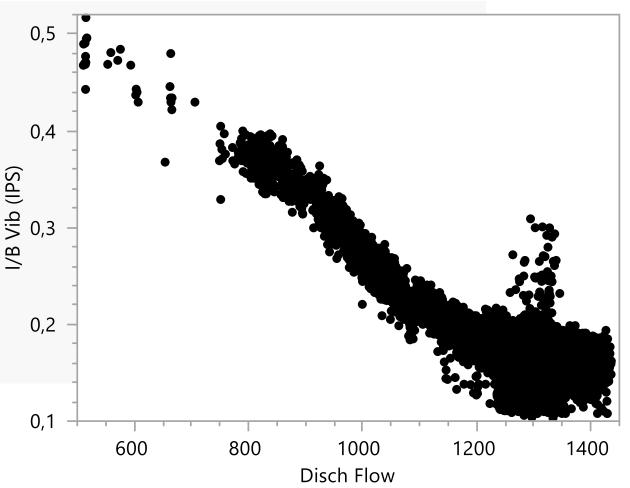
Summary Statistics

	Value	Lower 95%	Upper 95%	Signif. Prob
Correlation	0,835088	0,830818	0,839259	<,0001*
Covariance	3,986567			
Count	19755			

Variable	Mean	Std Dev
Disch Press	1790,338	103,9929
I/B Vib (IPS)	0,180908	0,045905

Development of the Research Project

2nd Step: Correlation Analysis

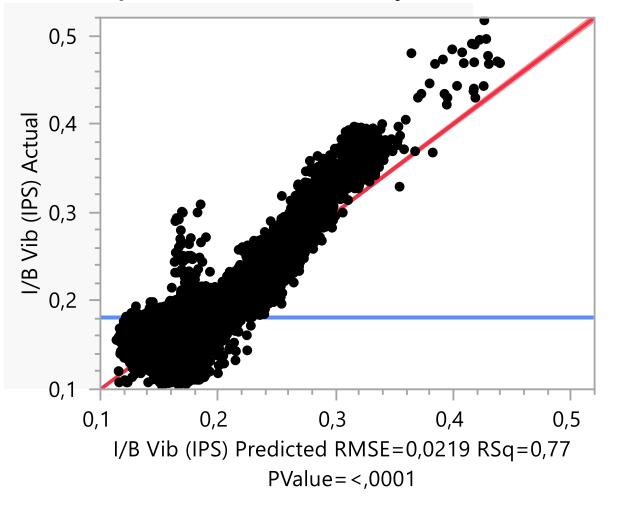

Likewise, we can notice that there is a decreasing relationship, in other words, when the discharge flow increases, the radial vibration decreases or vice versa.

Summary Statistics

	Value	Lower 95%	Upper 95%	Signif. Prob
Correlation	-0,87057	-0,87391	-0,86715	<,0001*
Covariance	-5,08724			
Count	19755			
Variable	Mean	Std Dev		
Disch Flow	1270,012	127,2959		

I/B Vib (IPS) 0,180908 0,045905

Bivariate Fit of I/B Vib (IPS) By Disch Flow



Development of the Research Project

3rd Step: Multiple Linear Regression Analysis

The regression model is significant. The R-squared is **0.77**, which indicates that the model explains 77% of the variance of the dependent variable. The variables are significant for the response variable, with a p-value < 0.05. The studentized residual plot does not show any violation of the model assumptions. No unusual or outlier values.

Response I/B Vib (IPS) Actual by Predicted Plot

Research Project Conclusion

Through the results of the application of Predictive Analytics (multiple linear regression) to the time series data of our pump, we can conclude that the results of the previous research carried out by H. Paul Barringer and Heinz P. Bloch were correct.

Considering that the Pump's Best Efficiency Point (BEP) is 1,500 GPM, we can see that as the flow moves away from the BEP, the vibrations increase exceeding the limits allowed according to ISO standards (≥ 0.16 IPS-RMS), when projecting the flow at 1,050 GPM, just 30% less than the BEP, the mechanical vibration reaching values of up to 0.5 IPS-RMS, to adjust to the prediction of the previous research that concludes an effect in 0.75xEta.The results also validate the inverse relationship between the effects of the flow versus the effects of the discharge pressure, according to the negative slope shown in the Pump curve.

"In Memory of H. Paul Barringer and Heinz P. Bloch"

H. Paul Barringer, PE Reliability Consultant at Barringer & Associates, Inc. Humble, Texas, United States 1936 – 2016

Heinz Bloch Consulting Engineer at Process Machinery Consulting Westminster, Colorado, United States 1933 – 2022