
Reliable Software SOW
• ann.neufelder@missionreadysoftware.com

• http://www.missionreadysoftware.com

• © Mission Ready Software 2022

1

http://www.missionreadysoftware.com/

Copyright Mission Ready Software 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
2

About the Presenter
Chairperson of IEEE 1633 Recommended Practices for Software Reliability
Working Group (2016 edition)

39 years of SW engineering and SW reliability experience

Authored NASA’s Software FMEA training webinar

Authored NASA’s Software FTA training webinar

Authored NASA’s Software Analyses training materials

Authored Intel’s Software Vendor Assessment

Has taught Software Reliability to more than 5000 people

Co-authored USAF Rome Laboratory “System and Software Reliability
Assurance Notebook", with P. Lakey, Boeing Corp.

Authored “Ensuring Software Reliability”, Marcel-Dekker, 1993.

Authored “Effective Application of Software Failure Modes Effects Analysis",
published for CSIAC, 2014.

Performed 100+ software reliability analyses on real software systems

U.S. Patent 5,374,731 for a predictive model

http://softrel.com/notebook.zip

Agenda

Purpose: Provide a
cookbook for
quantitative software
reliability SOW
specifications including
language, expected
deliverables

• SOW language for
• Software reliability plans, reports, assessments,

measurements, analysis
• Reliability SOW

• Inclusion of software in Section L

• CDRLS and 1423

• Why the task is needed

• Tailoring guidance for size of program, type of
program, Agile development, maturity of
software

• SOW language for specific software reliability
thresholds (i.e. MTBF, availability, etc.)

• Section L and M

Lessons
Learned

Reliable
Software
SOW

• Required system reliability is not
meeting specifications because of
software failures.

• DoD is finding out far too late in
development and test that system
requirements are not being met due to
the software.

• Software intensive systems often times
have too many restarts, resets, and/or
reboots which collectively cause the
system to be down longer than
required.

Goals

Reliable
Software
SOW

•Provide insight into the software development artifacts and
activities so that the Government can independently assess both
the software artifacts and the contractor’s ability to make the
software mission ready.

•Define acceptable system metrics supported by Reliability and
Maintainability (R&M) to measure and evaluate (define how
software related failures impact current R&M system metrics).

•Implement effective R&M requirements and metrics into
software development programs that are employing
Development, Security, and Operations (DevSecOps).

•Contract for software reliability and effectively evaluate the
risks of contractor’s proposal to achieve software reliability.

•Differentiate roles, responsibilities, and interactions of
reliability, software, and systems engineering.

•Provide for a contractual means for using lessons learned for
reliable design to build software that is more failure resistant
and fault tolerant.

•Reduce the occurrence or impact of software failures during
operation.

Applicability

Reliable
Software
SOW

•Weapon and combat systems, and the mission
systems that support weapon and combat
systems that have software

•This guidance is not intended for or use with
enterprise or business systems acquisitions

•Most, if not all, modern weapon and combat
systems have software

•The reliability engineer can determine from the
software engineering counterpart if the system
has software

The SOW
language and
guidance

Report No.
FCDD-AMR-
MR-22-08

• The Reliable Software SOW language written by
Assessment Division, Systems Readiness,
Directorate, Combat Capabilities Development
Command, Aviation and Missile Center

• The SOW language may/will be incorporated or adapted
by other DoD services

• The SOW language covers:
• The reliable software tasks to be delivered in working

groups/CDRLs
• When the tasks must be completed
• References to acceptable sources for conducting the tasks
• DiDs
• Cross matrix to software development artifacts such as

software development plan (SDP), Software Requirements
Specifications (SRS), Software Design Document (SDD),
Software Test Plan (STP), Software Test Description (STD),
Software Test Report (STR

• Guidance for RAM personnel to coordinate with
Government Software Engine

Copyright Mission Ready Software 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Selecting the
Appropriate Reliable

Software Tasks

Sometimes it’s too
late in the
program for some
of the software
reliability tasks

8

Reliable
software
tasks and
why you

need them

Element Why you need it

Software reliability program plan The Software RPP is the document that details the Contractor’s

planned efforts in order to achieve the software reliability

requirements and to ensure the integration of software

reliability activities into systems engineering.

Inclusion of software in the system

reliability model

Identifies how the software reliability is merged with the

hardware reliability to yield a system reliability model

Software reliability Allocation Ensures that the software is allocated part of the system

reliability objective

Software reliability Prediction The models that the contractor predicts software reliability

early in development

Software reliability Evaluation Ensures that the contractor is demonstrating that the actual

software reliability in testing is trending towards the allocation

Software FMEA Identifies failure modes in the software that are very difficult to

identify with traditional nominal case testing. Will often

identify hazards due to software that were previously

unknown.

Inclusion of SW in FRACAS Ensures that the contractor has a closed loop system for

software failures and corrective actions

Software reliability risk assessment Ensures that any risk doesn’t derail the software reliability

Testing for software reliability Provides confidence to the DoD that the code has been

executed in addition to the requirements and fault injection.

Guidance for selecting the reliable
software tasks

• The software reliability tasks, as a whole, aren’t applicable if
• There aren’t any reliability requirements for the program
• The software reliability has been demonstrated to meet the reliability

requirements and there are no more planned upgrades and no more ECPs

• Otherwise tailor each task depending on the program size, type and
software maturity

• All software reliability tasks apply to Agile/Continuous Integration/Continuous
Development frameworks and DevSecOps.

• However, the RAM Government personnel may need to tailor the CDRLS/1423 for
incremental development

• The tasks apply to all software LRUs that are deployed into operational use but
does not apply to development and test tools

• IEEE 1633 2016 clause 5.1.1.1 describes what software is and is not applicable for
software reliability

Summary

Reliable Software Tasks MCA programs
Any program with a short contract time (MTA),

any small but important program

Reliable Software Program Plan √ √

Inclusion of Software in System
Reliability Model

Model type can be tailored to
complexity of SW/HW1

Contractor can choose simple model1

Reliable Software Allocations Model selected based on accuracy/
availability of data1

Contractor can choose simple model1

Reliable Software Predictions Select models depending on risk2 Either remove task or use simplest models2

Reliable Software Growth Evaluation Full or minimal metric set depending
on risk3

Minimal metric set is an option3

Software FMEA Tailored by risk. 4 Tailored by risk. 4

Inclusion of Software in FRACAS √ √

Software reliability risk assessment √ √

Software reliability testing Tailored to apply to the most mission critical software LRUs

√- Applicable anytime there is mission critical software intensive system
1 - Applies if either the software reliability predictions or software reliability growth evaluation is relevant
2 - Most useful early in the program. Not useful if the coding activities are complete.
3 - Unless the reliability objective has been demonstrated this task is relevant.
4 - Most useful before code is complete. Not useful if all testing is complete.

Cost
Justification

Task Relative cost

Software reliability program plan $

Inclusion of software in the system reliability model $ The software group has to identify the software CSCIs anyhow so
putting them in the model is not costly

Software reliability Allocation $$ - Predictive models can be used for allocation. Automated tools
are availableSoftware reliability Prediction

Software reliability Evaluation $$ - Low cost automated tools are available

Software FMEA Our recommended tailoring is $$.

Inclusion of SW in FRACAS $ Sending the software failure reports is not costly

Software reliability risk assessment $ Consists of a simple checklist

Testing for software reliability $$ to $$$ Our tailoring minimizes cost and maximizes effectiveness

Applicability
for Agile/
DevSecOps

• All tasks apply for software programs
developed with Agile infrastructure or
DevSecOps

• The timing of the deliverables may be
affected by the development
framework and is discussed in the
guidance for the CDRL/1423.

• Note that IEEE 1633 2016 has
guidance in clause 4.4, Tables 16 and
23, clause 5.3.2.4, for the software
reliability tasks for agile, incremental
and waterfall deliveries.

Reliable Software
SOW Language is

integrated into the
Reliability SOW

language

At this time there
no “software

reliability” DIDs

The software reliability SOW language contained in this document is to be integrated into the
appropriate reliability SOW sections.

Existing section of SOW

geared towards hardware

Merge in these sections

Reliability program plan Reliable Software Program Plan

Software reliability risk assessment

System Reliability Model Inclusion of Software Components in

System Reliability Model

Reliability Allocations Software reliability Allocations

Reliability Models, Predictions Software reliability Prediction

Reliability Growth Software reliability Evaluation

Testing for Software Reliability

FMEA Software Failure Modes Effects Analysis

FRACAS Software FRACAS

List of DiDs and referenced documents
Data Item Title Date

1. DI-SESS-81613A
(Sequence A001)

Reliability and Maintainability Program Plan (Reliable Software Program Plan) 15 Jul 14

2. DI-SESS-81496B
(Sequence A002)

Reliability and Maintainability (R&M) Block and Mathematical Models Report 8 Oct 19

3. DI-SESS-81968
(Sequence A003)

Reliability and Maintainability Allocation Report 10 Jul 14

4. DI-SESS-81497B
(Sequence A004)

Reliability and Maintainability Predictions Report 8 Oct 19

5. DI-SESS-81628B
(Sequence A005)

Reliability Test Report (SW Reliability Growth) 18 Feb 20

6. DI-SESS-81495A
(Sequence A006)

Failure Modes, Effects, and Criticality Analysis Report 16 May 19

7. DI-SESS-80255B
(Sequence A007)

Failure Summary and Analysis Report 15 Oct 19

8. DI-MGMT-81809
(Sequence A008)

Risk Management Status Report (Reliable Software Risk Assessment) 26 Apr 10

9. IEEE 1633 IEEE Recommended Practice on Software Reliability 22 Sep 16

10. MIL-STD-882E Department of Defense Standard Practice System Safety 11 May 12

11. SAE ARP-5580 Recommended Failure Modes and Effects Analysis (FMEA) Practices for Non-
Automobile Applications

7 Aug 20

12. INCOSE-TP-2010-006-01 INCOSE Guide for Writing Software Requirements APR 12

13. FSC-RELI System and Software Reliability Assurance
Notebook

1997

Copyright Mission Ready Software 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Summary of the
Reliable Software

Tasks
1
7

SSRM
Defined

• A graphical depiction of the system with an
underlying analysis, such as the Reliability Block
Diagram, Markov Model, Mission Model, and/or
Fault Tree Analysis.

• The SSRM is an SRM that includes all software
components in the system model.

• The analysis should identify critical weaknesses in
the system design which impact software reliability.

• These resources discuss system reliability models
• IEEE 1633 2016 clause 5.3.4

• “System and Software Reliability Assurance
Notebook FSC-RELI” chapters 4 and 5 provide
guidance.

• See module 3 for examples

Reliable
Software
Allocation
Defined

• This analysis ensures that the portion of the system reliability
requirement is allocated appropriately to the software
components.

• Software allocations are directly related to size estimates for
the software. All size estimates are inherently derived from
the amount of effort needed to develop the software.

• More complex software requires more effort. It doesn’t
matter what unit of measure is chosen for the size estimate.
What matters is that size estimates can and will change until
coding is complete.

• The software allocations can and will be revised as the size
estimates are revised.

• Allocations are an ongoing process which goes hand in hand
with the SSRM activity.

• Allocation can be made based on several different techniques
with the relative accuracy identified on the next slide.

• IEEE 1633 Recommended Practices for Software Reliability,
2016 clauses 5.3.5 and 5.3.8 discusses several methods for
allocation.

• See Module 3 for more information

Allocation methods as per IEEE 1633
Allocation Method Preference
Historical data which indicates X% of the
fielded failures are due to software.

Usually most accurate if the data is recent and the historical data is from a similar system
with similar mission. While the accuracy of historical data is typically the best, it’s also
difficult to collect for DoD systems.

Recent testing data which indicates X% of
testing failures are due to the software.

Relatively accurate if the software is being tested in an operational environment (with the
target hardware).

Bottom-up allocation – All system
configuration items undergo reliability
assessment.

The hardware and software configuration items are applied to the SRM. The allocation for
software is simply the predicted failure rate over total of all predicted failure rates. Even if
the assessment does not meet the system requirement, the allocation is still the relative
contribution of the prediction to the system prediction.
The accuracy depends on the models used for the bottom-up predictions. More inputs to
the model usually means more accuracy if the model is used correctly and inputs are
correct.

Allocation by duty cycle. The % allocated to
SW depends on the duty cycle of each of the
components in the system.

This model is useful when there is varying duty cycle of the system components. Accuracy
depends on the accuracy of the prediction model discussed in the software reliability
prediction task. If historical data is used, this method is typically accurate.

Allocation by Research and Development
cost. The % of R&D engineering $ spent on
SW versus % R&D engineering $ spent on HW

Cost is a good indicator of software reliability but only if the cost is accurately predicted.
If the cost of developing the software components is similar to the cost of the hardware
R&D then the software contribution to failure rate is likely to be similar to the hardware.

Allocation by number of Configuration Items.
Count the hardware LRUs and the software
LRUs. Allocation is based on relative number
of LRUs.

Not as accurate as other methods. There is much variation on how much code comprises
an LRU. If there are many small LRUs, this method can over-allocate the software or
hardware. If there is one large software LRU, this method can under-allocate the software
portion.

Overview of software reliability prediction
methods

Method Pros Cons

Historical data from
similar systems

Usually the most accurate when calibrated for any
differences in mission or development practices

Many organizations either don’t have any
or don’t have processes to collect it

Detailed assessment
surveys

Next to historical data, these are most accurate as
they are based on historical data. Accuracy depends
on 1) number of questions 2) ability for organization
to answer all questions accurately and 3) the age of
the model. (Models > 20 years old are generally not
accurate).

Requires contractor’s software and
reliability people to be coordinated. Time
to complete assessment depends on how
many questions there are and whether the
RAM engineer can get the answers from
software engineering.

Rayleigh model When based on historical data such as QSM’s SLIM,
these models are relatively accurate.

Requires contractor’s software and
reliability people coordinated activities.

Simple look up
tables based on
application type or
CMMi

Quick and easy Are the least accurate of the other
methods shown above but significantly
more accurate than subject matter
guessing

Reliable
Software
Evaluation
Defined

• Reliability growth is the positive improvement in reliability
metric over a period of time due to the implementation of
corrective actions. For software, reliability growth is a
function of:

• Amount of testing hours and test hours during which there are
no new features added to the software system

• The stability of the reused and off the shelf software
components

• The number of installed sites during reliability growth - more
installed sites and end users means faster growth while fewer
installed sites usually means less rapid growth

• The Reliable Software Evaluation should measure the:
• Defect discovery of failures from software (increasing,

peaking, or decreasing or some combination)
• Actual software reliability tracked against Software

reliability goals
• Capability drops and expected effect on reliability
• Degradation due to test environment, scalability, etc.
• Confidence bounds on predicted and extrapolated

reliability metrics

Software reliability Evaluation • This illustrates typical defect
discovery profile over the life
of a software version (Only
unique defect discoveries
graphed).

• If the contractor deploys the
software before the peak, the
software is immature and not
suitable for the customer.

• If contractor deploys the
software between the peak
and when the software stabile
(defects flatten out), the
software may be usable but
not meet the reliability goals.

• If the software deploys once
the defect discovery rate
flattens either the reliability
objectives of the program have
been met or are on the path to
meeting those objectives
stabilize.

Software reliability Evaluation
• The most important metric is the defect discovery trend.

• If the trend is not decreasing, then most of the other metrics are largely irrelevant.

• The second most important metric is the fix rate which ensures that the contractor is
fixing the defects fast enough to address the failures that effect reliability or availability.

• Also important are the defects not piling up from release to release or Sprint to Sprint.

• Figure on previous page is an example of defect pileup.
• The discovered defects are plotted in increments of 10 usage hours.

• When Sprint 2 was merged in at 190 hours, the most recent defect discovery rate was at 1 defect per
10 hours. However, at 350 hours, the most recent rate is at 5 per 10 hours (4 from Sprint 2 and 1 from
Sprint 1).

• Sprint 3 is about to be merged in despite the increase in the rate and the fact that Sprint 2 received
30 hours less of testing than Sprint 1.

• If Sprints 3 and beyond continue in this pattern, eventually the software will be released with an
increasing defect rate. The FDSC should provide specific examples of software failures that effect
reliability and availability and should not be limited to only those failures that result in a shutdown.

Software Failure Modes Effects Analysis
Below are just a few examples of the failure modes that lead to serious software failures:

•Faulty error handling – Quantas flight 72 un-commanded downward pitch (incorrect fault recovery), Mars
Polar Lander (software failed to detect spurious data) , Denver Airport (software assumed the luggage would
not get jammed) , NASA Spirit Rover (too many files on drive not detected)

•Faulty data definition – ESA Ariane 5 explosion (16/64-bit mismatch) , Mars Climate Orbiter (Metric/English
mismatch) , TITANIV (wrong constant defined)

•Faulty logic/sequence - Solar Heliospheric Observatory spacecraft mishap , AT&T Mid Atlantic outage in 1991 ,
Operator’s choice of weapon release overridden by software control

•Faulty state management - Incorrect missile firing from invalid setup sequence

•Faulty algorithm – Flight controls fail at supersonic transition , Mariner 1 mishap

•Faulty timing –2003 Northeast blackout , Therac 25 race condition , Missile launch timing error , Apollo 11
lunar landing

•Faulty endurance – Patriot system failure

•Peak load conditions - IOWA caucus failure

•Faulty usability

•Software makes it too easy for humans to make irreversible mistakes –PANAMA city over-radiation

•Insufficient positive feedback of safety and mission critical events – 2007 GE over-radiation

Software FMEA approaches
Method Description

Functional Focus on the design and specifications and in particular what they are NOT stating.
Applied at 3 levels:
TL - Top level – things that has effected other systems (peak loading, etc.
FL - Feature level – things that go wrong at the use case, capability level
SL- Specification level – things that go wrong with a single specification statement

Common Defect Enumeration is posted on DoD R&M CoP Website. See my other
presentation on this.

Interface Focus on the common interface faults such as metric/English conflicts, conflicts with
data type/size/format/scale/resolution

Common Defect Enumeration is posted on DoD R&M CoP Website. See my other
presentation on this.

Detailed Focus on the code. This is most labor intensive and does not identify faults due to
“missing code”. THIS approach is expense and NOT recommended.

When it’s most
cost effective

• The software FMEA is not generally cost effective if:
• The software is completely finished developed and tested

and there haven’t been any serious unexpected software
failures from this product recently

• OR the software is in a very mature state and there’s no
major upgrades or ECPs planned

• The SFMEA identifies failure modes that effect design and even
specifications

• If the analysis is completed after code is done it will be expensive
for software engineering to make fixes

• It is essential that the SFMEA be conducted in line with software
development

• SFMEA has ZERO value if completed after software testing is done

Alternative for
reducing cost

• A top level FMEA is the cheapest and covers the most functionality if
conducted properly

• See the Top-Level Common Defect Enumeration tables.

• Endurance – system degrades during life of mission – CDE TL-PR-1 and
TL-PR-2

• Peak loading – system cannot handle multiple threats at same time or
different threats CDE TL-PR-5 through TL-PR-8

• Processing – Videos, data logs, files build up over time and eventually
cause mission computers to shut down – CDE TL-3

• Inability to detect or handle hardware faults, power faults,
communication faults, computations faults or user faults- CDE TL-EH-1
through CDE TL-EH-30

• Changes in mission such as duration – CDE TL-FC-4

• Prohibited state transition allowed by code – CDE TL-SM-1 and CDE TL-
SM-2

• Software is unable to recover after an abort or unexpected shut down or
loss of power – TL-SM-5

Inclusion of
software
failures in
FRACAS

• Contractors quite often store software
problem reports separately from the
hardware reports and rarely call the system
a “FRACAS”

• They often use “JIRA” or “Clearquest” to store
their reports

• The contractor is required to have a closed
loop process for software failure reports.
This task is simply making those reports
available to the Government and tagging the
failures that effect reliability.

Software
reliability risk
assessment

• The software FMEA and software fault tree identify specific functional failure
modes that directly lead to a specific system failure. Software risks are
organizational decisions that can lead to many software failures.

• Historically these risks were known from the start of the program but no one
paid attention to them or understood their effect on the program.

• These are some of the risks that can single handedly derail a program:

• The contractor plans to reuse code that’s not really reusable

• The contractor is not planning to reuse code when they should

• Grossly underestimated the work required to modify the code for a new
mission duration or mission type or new weapon hardware

• The contractor has a team of software engineers that does not
understand the mission, weapon, customer or industry

• The contractor has sudden high turnover of software engineers working
the program

• The contractor has software people who aren’t near the target
hardware or hardware engineers

• The contractor is attempting to do handle too many learning curves in a
single customer release

• Learning curves include but aren’t limited to:

• Technology that is new to the software team (i.e. the first time they
have developed a cloud application for example)

• Hardware interfaces that are undefined and evolving

• A sudden change in staff or company leadership.

Reliable Tests
Test type Software functional level example System functional level example

Go-no go Pressing a button is “Go”. Not pressing a
button is “No Go”

The car does not brake when not commanded, does not accelerate when
not commanded, the convertible top is not put down when not
commanded

Timing The BIT test starts no later than 100ms
after startup and finishes no later than
2 seconds

The car can brake or change lanes within the time required

Boundary The algorithm accepts values between
50 and 90. The boundary tests are 49,
50, 90, and 91.

The vehicle is accelerated from stop, and from maximum speed limit

Trajectory Using the same algorithm- it can range
from 50 to 90. Trajectory tests might
include starting at 50 and transitioning
to 90 and vice versa. Starting at 75 and
transitioning to 50. Starting at 75 and
transitioning to 90. Many others.

The vehicle is accelerated and deaccelerated from each of these
velocities to every other velocity – 1) Very low speeds (school bus
scenario), 2) low speed (side streets), 3) medium speed (major roads),
and 4) high speed (highways)

Power test Cutting the power while running any
software intensive function.

Run out of gas and verify that the vehicle does not accelerate or shift into
reverse immediately after refueling. (i.e., should not remember what it
was doing before running out of gas).

State tests Testing the lower-level state transitions
for all software functions. Showing that
all low-level prohibited state transitions
are not allowed by the software.

The vehicle does not transition to park mode while driving or transition
to drive mode while parking; or the convertible top is not allowed to go
up or down while moving (whether commanded or not).

Reliable Tests
Test

type
Software functional level example System functional level example

Data
value
tests

Using the algorithm example for
boundary testing – testing large
jumps in values, small jumps in
values, fractional changes in values.

Small velocity changes (going a few MPH faster or slower),
velocity changes in whole numbers, velocity changes in fractional
numbers, big velocity changes (i.e., from 40 to 70mph or 70 to 40)

Fault
injection
tests

Injecting bad data such as NaN (not a
number)

Fault injection with faulty vehicle hardware or consumables
(brakes, oil, fluids, tires, etc.)

Zero
value
test

Setting values in computations to
zero or near zero.

Verify transitioning to stop (zero velocity) from all four (4) velocity
ranges and transitioning from stop to all four (4) velocity ranges

Peak
loading
tests

Testing each function with the
maximum volume of concurrent
inputs

Rapid succession of stop and go (traffic lights or school bus)

Enduran
ce test

Test each software function for the
maximum mission time for that
function

Get on a major highway and drive until nearly out of fuel

TLYO Drive like real people drive (teenagers, adults, working people, retired people, professional drivers, etc.)

Guidance on
selecting tests

Not all tests apply to all
systems.

Test type Applicability Justification

TLYO Applicable to all systems. TLYO is the closest test to end user operation. The trajectory tests are an
important ingredient of TLYO.

Trajectory Applicable to all systems.

Go-no go Applicable to all systems. Can be easily combined with requirements testing.

Fault
injection
tests

Applicable to all systems. Can be covered at same time as a hardware fault injection test if the
required behavior of the software under various faulted conditions is
documented.
Power testing is a subset of fault injection testing.

Power test Applicable to all systems.

State tests Applicable to all systems. This test ensures no inadvertent irreversible weapon events. It is not
expensive to test.

Timing Applicable to all systems. Timing is critical for weapons. If the software specifications cover timing
budgets this will be implicitly tested in the requirements testing. However,
tests for scheduling analysis are typically not covered in the contractor’s
requirements testing.

Endurance
test

Applicable to all systems. Most
relevant for systems that are on for an
extended duration (more than a few
hours).

This consists of one test for the duration of the mission time without
reboot. If the mission time is particularly long benchmarking of timing and
accuracy can establish whether the software degrades for the entire
mission.

Peak loading
tests

Applicable to systems that have
multiple users, multiple simultaneous
threats, multiple workstations, etc.

This test is not expensive to run. Most of the work is in the setup of the
workstations, users, etc.

Boundary Applicable to all systems. Zero values and boundary tests are conducted at the same time. These
tests cost effectively verify ranges of value so as to test the values that are
most likely to be problematic. These tests are not expensive, particularly
when conducted at an LRU level.

Zero value
test

Applicable to all systems.

Data value
tests

Applicable to all systems. Data value tests are combined with other tests such as boundary, zero
value and trajectory tests to minimize the total test cases. The goal is
simply to test with varying data types and sizes.

RAM/Software Engineering Coordination

• Integrating the reliability activities with the software design and the
Systems Engineering effort ensures that all parties are aware of software
design changes and how software design changes impact reliability of the
software and system level reliability.

• The software architecture can have a direct impact on the reliability block
diagram.

• For example, if all of the software code is developed so that it is in one software
configuration item, that item can be a single point failure in the RBD.

• Additionally, the reliability engineers will need to have size estimates and other data
in order to perform software reliability predictions and assessments.

• The Contractor should have methods in place to ensure that there is a two way
communication channel between the reliability and software design teams and that
these teams are working together towards a common goal.

Lessons Learned

• Very few organizations have true “software reliability” personnel who understand both
software and reliability engineering

• Systems design ensures that both software AND hardware design is optimized for system
reliability. Many organizations design vacuums.

• Software engineering and reliability engineering personnel rarely interact during
proposal phase, development or engineering

• Reliability engineering often proposes the software reliability tasks without coordination
from software engineering

• Software engineering is often blindsided by commitments and assessments conducted
by reliability engineering

Copyright Mission Ready Software 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.

Annex
DoD
Pathways

3
6

This figure the six DoD
acquisition pathways. This SOW

guidance is only for MCA, MTA, and
Software Acquisition.

DoDI 5000.02, “Operation of the
Adaptive Acquisition Framework,”

January 23, 2020)

DoD Pathways

RP to RF to
field

MTA Path

MTA with RPRP
Path with a

transition to RF
with a transition

to MCA

MTA Path ways

MTA with RP
transition to

MCA

MTA Path ways

