

Modeling and Simulation for Army Sustainment: Depot Loading

Jake Phillips, Logistics Engineering Laboratory

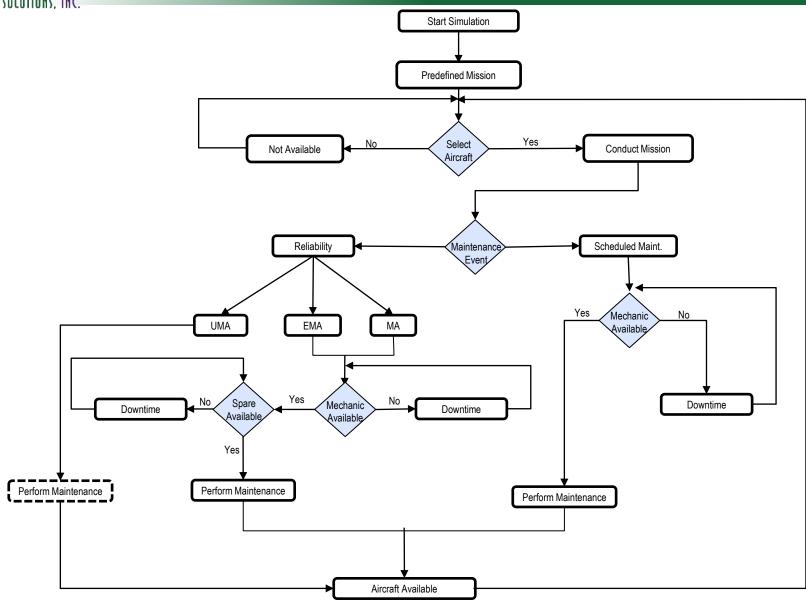
DISCRETE-EVENT SIMULATION

What is discrete-event simulation?

- Software engine which keeps track of a system timeline and events occurring along the timeline.
- Method to use computing power to handle complex situations situations where using equations alone break down and can no longer adequately assess.

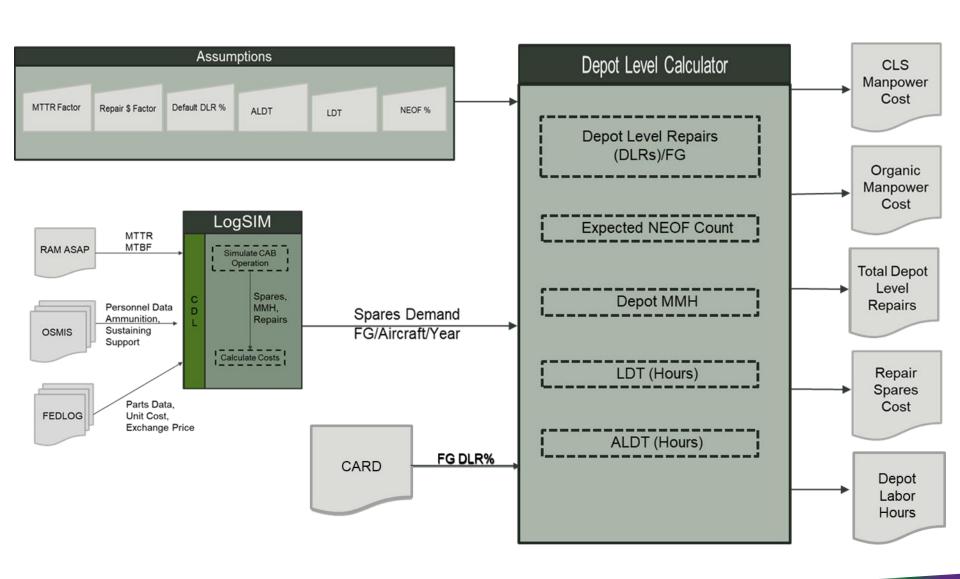
History

- Discrete-event simulation was invented in 1946 by physicists trying to understand the behavior of neutrons.
- By the 1970's, discrete-event simulation was widely used by tech giants and government agencies such as IBM and the Naval Air Missile Test Center.
- Discrete-event simulation is not new!


Today

- What's new is simulating Army Aviation operations to analyze, learn, and pinpoint the variables which drive sustainment – both availability and affordability.
- What's new is creating a feedback loop showing how aircraft design decisions made today will impact sustainment 10-20-50 years down the road when these new aircraft are flying and being supported.

Discrete-event simulation is a trusted method to analyze extremely complex problems



LOGSIM AVIATION SIMULATION LOGIC

OPERATIONAL MODEL TO MAINTENANCE MODEL

OGLAB FLEET-WIDE OPERATIONAL DEPOT-LEVEL MODEL

Operational Model

- > 500 Aircraft
 - 25-year lifecycle per aircraft
 - Scheduled maintenance based on historical aircraft
- 45-year simulation based on OMS/MP (~ 400K hours)
 - Complete Fielding schedule and demil
- Mission Scenarios OMS/MP
 - 24 Aircraft per Unit
- Each aircraft records ~10K flight hours
 - Over 5 million total flight hours are generated across the entire fleet
- Endless number of maintainers and spares quantity available

Depot Maintenance Model

- 50 Years of Depot Operations
 - Generating over 4 million hours of Depot Man Hours
- Includes On Condition Maintenance, Overhauls, Resets, and NEOF operations

DEPOT LEVEL FUNCTIONAL GROUP REPAIR PERCENTAGES

Fielding Ramp-up

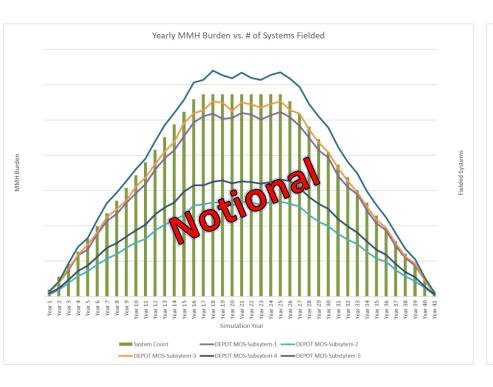
- Reset depot maintenance events will not occur until after the aircraft operates in Multi-Domain Operation (MDO) OPTEMPO
- o Depot Maintenance Probabilities IOC for all FG:
 - OCM ~ 90%
 - RESET ~ 0%
 - OVERHAUL ~ 5%
 - NEOF ~ 5%
- Depot Overhaul Maintenance Probabilities for years IOC + 4

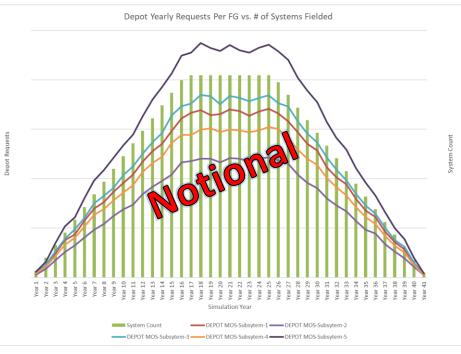
Sub-System	Overhaul %	NEOF %	OCM %	Reset %
Sub-Sytem 1	80%	%	10%	0%
Sub-Sytem 2	ROSO V	5%	60%	0%
Sub-Syten	95%	5%	0%	0%
Sub-Sytem 4	95%	5%	0%	0%

Depot Reset Probabilities for years IOC + 9

Sub-System	Overhaul %	NEGE %	OCM %	Reset %
Sub-Sytem 1		5%	10%	3%
Sub-Sytem 2	30%	5%	2%	60%
Sub-Sytem 3	0%	5%	0%	93%

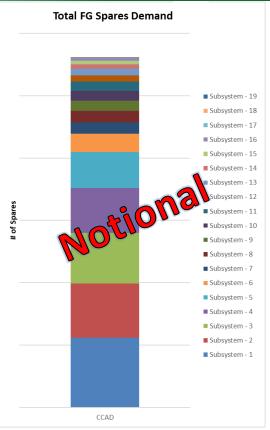
• All FGs which do not have supporting RESET and Overhaul probabilities from Depot 1 have a NEOF rate of 5% and an OCM rate of 95%.

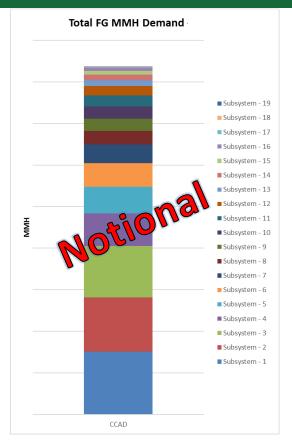

FULLY FIELDED DEPOT DEMAND



~30% of the fleet-wide Depot demand is generated during the span where the aircraft is fully fielded

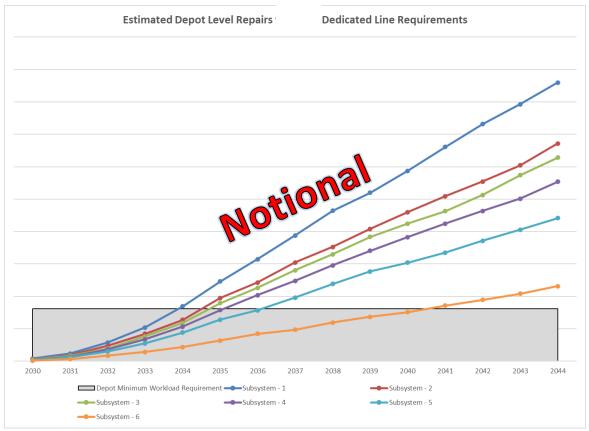
DEPOT DEMAND PER YEAR


- Each graph represents the depot burden per year for each of the Top 5 FGs based on the number of fielded systems over the lifecycle of the fleet
- One Functional Group creates the largest depot burden for spare parts and MMH
 - 55% of all come from one FG's failures that require a spare are sent to the depot



MAINTENANCE MAN HOURS DEMAND

Depot Locations	Number of Functional Groups	
Depot 1	17	
Depot 2	2	



- SME defined which depot location each FG (for UH-60M/CH-47F) is sent to for repair
- Electronic subsystems are sent to Depot 2
 - Remaining FG's sent to Depot 1
- Greater than 250k depot level spares and 4 million depot MMH expected at Depot 1 over the lifecycle of the fleet

DEPOT MINIMUM WORKLOAD

- Number of spares required to meet minimum depot workload requirement ~ 324 depot level spares/year
 - Assumption based on minimum depot workload for a historical system
- Some Functional Groups do not meet minimum depot workload during lifecycle of aircraft
- One Functional Group reaches the minimum depot level spares at Year 3 and sustains that workload for 37 years

SUMMARY AND QUESTIONS

- By leveraging Army data and practices the LogLab has been effective in influencing the design of Army Aviation products with sustainment in mind
- The Logistics Engineering Laboratory has used this Depot Analysis to inform multiple documents during the design phase of the Army Acquisition process
 - Core Logistics Analysis (CLA/CDA)
 - Business Case Analysis (BCA)
 - Data Rights Strategies
 - IP Evaluation
- Questions?
- Contact:
 - Derrick.j.Phillips.ctr@army.mil