

INTELLIGENT FREQUENCY MODULATED CONTINUOUS WAVE (IFMCW) TECHNICAL OVERVIEW

RAM Training Summit XIV

2022-11-01

AVNIK Defense Solutions

- The iFMCW Device
- Time Domain Reflectometry
- Frequency Domain Reflectometry
- Where We Are, Where We Are Going
 - Current lab and prototype states (technology readiness level [TRL] 4)
 - Future plans and designs
- Summary

WHAT IS THE IFMCW DEVICE?

- Compact cable testing tool
- Detects, locates, and characterizes faults
 - Uses frequency domain reflectometry (FDR)
 - Cables tested: Coaxial, CAT5, twisted shielded pairs
- Can replace large and heavy legacy wire checking devices
 - Handheld, lightweight instead of a two man lift
 - Streamlines depot workflow, can be used at all maintenance levels

DEVELOPMENT CONCEPT OVERVIEW

- iFMCW V1.0
 - Detect, locate, and characterize wire faults
 - Simultaneously detect multiple faults
 - Predictive analytics
 - Smaller form factor (large cellphone)
 - Improved signal

Image depicting proposed design of V1.0 device

- Basic Premise of Operation:
 - Inject a pulsed signal into cable
 - Measure reflection time of faults (on order of nanoseconds)
 - Calculate length (given the velocity factor)
- Harder to distinguish noise from reflections if reflections are small
- High power is required to produce results if noise is overwhelming
- Determining correct pulsewidth for distance measurement and resolution can be difficult
 - Shorter pulse yields higher resolution, but less range and vice versa for longer pulses

Illustration of interpreted reflections for various cases in TDR Image: https://www.neetrac.gatech.edu/publications/CDFI/5-TDR_17_with-Copyright.pdf

- Basic Premise of Operation:
 - Injects a linearly frequency-swept pulse
 - Combine reflected signal with baseline signal in mixer
 - Calculate cable length from FFT of resulting data (given the velocity factor)
- Spectral patterns are less susceptible to noise at the same power
- Resolution is a function of the bandwidth

- High Resolution:
 - Resolution is a function of the signal bandwidth
- Mathematical aspect:
 - Initial signal processing relies on fast Fourier transform (FFT) of signal
- Detect various types of interference
- Resistance to noise
 - Higher signal to noise ratio (SNR) is more easily achieved than in TDR
 - FDR encodes information in the frequency domain which is less susceptible to degradation from signal spikes
- Low Power (order of milliwatts)

• Reflection Coefficient Γ is defined as:

$$\Gamma = \frac{Z_L - Z_O}{Z_L + Z_O}$$

- Imperfections in the cable cause deviations in the characteristic impedance from the expected value of Z₀
- In the simplest cases:
 - Γ = 0 when impedance (i.e. $Z_L = Z_0$).
 - $\Gamma = 1$ at open circuits ($Z_L \rightarrow \infty$)
 - $\Gamma = -1$ at short circuits (Z_L = 0)

Example: impedance mismatch ($Z \neq Z_o$) causes standing wave ratio to become nonzero, causing reflection seen from the left side

Image:

https://en.wikipedia.org/wiki/Reflections_of_signals_on_conducting_lines

- Achieve better signal fidelity for:
 - Fault detection (>30 dB from noise)
 - Localization
 - Characterization
- Preliminary remaining useful life prediction
 - Mechanical and thermal stresses
- Intermittent and incipient faults: Detection, location, and characterization
- Multiple faults simultaneously
- Transitioning these capabilities to the handheld device

Graph depicting clustering of various fault types based on particular metrics

- The image on the right depicts damage induced by inserting a tack into coaxial cable
- Showcases ability to quantify incipient faults
- Deeper tack insertions migrate from left to right on graph as faults approach complete short (red arrow)
- Tack damage is still detectable even after tack removal (not shown)

WHERE WE ARE: V0.1 PROTOTYPE

- **iFMCW V0.1** w/FDR Results:
 - Detect and locate faults with accuracy to within 1 inch
 - Cables Types Tested: Coaxial, CAT5, twisted shielded pair
- Footprint
 - Hand-held and lightweight
 - 2.19 lbs.
 - $-9'' \times 9'' \times 5''$
 - 4x 9V batteries and power bank

- Image depicting V0.1 Prototype data output for the detection of CAT5 cable termination ~5 dB signal above noise
- Lower SNR is due to early stages of development
 - Higher frequency and power components will be added to increase value

80" CAT5 cable termination detected with 3300Hz output

- Detect, locate, and characterize multiple faults simultaneously
- Further Characterization Capabilities
 - Open, short, intermittent fault types for more cables
 - Chafing, bending, and other types of mechanical/environmental damage such as corrosion and thermal damage
- Predictive Capabilities
 - Anticipate incipient deteriorating cables
- Smaller Form Factor (< 1/2 current footprint)
 - Currently has a large power bank, 9V batteries powering separate modules
 - Simplification to only one small power supply
- Higher Signal Power into Test Cable
 - Currently only 5 mW
 - Provide higher SNR for faults to detect smaller faults and longer cables

Image depicting proposed design of V1.0 device

- iFMCW device leverages FDR analysis to detect, locate, and characterize faults
- Handheld
- Low power (< 1W)
- In a lab environment has demonstrated the ability to detect, locate, and characterize a variety of faults on multiple cables
- V0.1 prototype has shown technology can be miniaturized, with further improvements allowing the lab capability integrated into a handheld device

• Jeff Craven

jeffery.craven@avnikdefense.com

• Wai Tai Chan

wai.chan@avnikdefense.com

Michele Platt

michele.platt@avnikdefense.com

- Morgan Evans <u>morgan.evans@avnikdefense.com</u>
- AVNIK website

www.avnikdefense.com