"To a significant extent, the success of the NERVA program...was made possible through effective implementation of the Product Assurance Program Plan. The fact that there were very few technical setbacks in a program of such complexity, where so much could go wrong, is due to the detailed planning of Reliability and Quality Control activities, which anticipated problems in time to prevent them from becoming serious."

- Technical Summary Report of NERVA Program, 1972

Reliability-Driven Design of a Nuclear Thermal Rocket Engine

SAMANTHA B. RAWLINS | PH.D. STUDENT

ADVISOR: DR. DALE THOMAS

EMAIL: SR0134@UAH.EDU

Nuclear Engine for Rocket Vehicle Application (NERVA)

NASA/DOE/DOD Project from 1961-1972

- Subproject within the Rover Program (started in 1955)
- Originally proposed for Apollo (third stage of the Saturn V rocket)
- Canceled in 1972 due to loss of mission

22 full-scale ground engine/reactor tests

- No (unintentional) catastrophic failures
- Final test was flight configuration (TRL 6); however, program canceled before reaching flight certification

"We realized early in the nuclear propulsion program that the basic build/break mode was neither practical nor desirable." – W. W. Madsen, Nuclear Propulsion Systems Engineering, 1991

NERVA Engine Reliability Methodology

"Test-Fail-Fix" does not work with space nuclear systems • Testing costs more than for a non-nuclear alternative

• Lower programmatic and societal tolerance for failure

NERVA created early version of "Design for Reliability"

"The basic theory of probabilistic design technology is many years old; however, the development and application of the technique is new. **NERVA was the first program to incorporate this philosophy into the design and development effort as a requirement.**"

– NERVA Probabilistic Design Training Course, June 1972

Estimated only 8 additional full-scale tests (30 total) to reach flight readiness with 99.5% reliability

GURE 1 - RELIABILITY GROWTH COMPARISON ACTU CHEMICALS AND REQUIRED NERVA

NERVA Reliability Methodology Overview

"A separate group working alone to achieve reliability will not attain the high reliability requirements of the NERVA program. All management, design, *manufacturing, and test* personnel must be responsibly involved to see that the desired reliability is achieved." - NERVA Reliability Plan, 1970

[6,7]

Predicted Reliabilities by End of Program

	Predicted Reliability
Nuclear Subsystem (NSS)	92.1%
Fuel & Central Support Elements	97.0%
Cluster Hardware	97.7%
Core Periphery	99.95%
Support Plate & Plena	99.996%
Internal Shield	99.9 ₁₀ 8%*
Reflector Assembly	99.5%
Control Drum Drive Actuators	99.996%
Structural Support Coolant Assembly	97.7%

	Predicted Reliability
Non-Nuclear Subsystem (NNSS)	32.3%
Turbopump Assembly	55.6%
Pump Discharge Control	99.2%
Turbine Bypass Control	99.90%
Cooldown	88.1%
Nozzle Assembly & Pressure Vessel	99.91%
Thrust Structure & External Shield	99.996%
Gimbal Assembly	96.9%
Instrumentation & Control	68.5%

[9]

Resultant Proposed Test Plan

Future plans prioritized additional testing of the nuclear subsystem, turbopumps, and EPIC

EPIC (Electronics, Power, Instrumentation, and Control) required >3 more years of development

NRO	RECOMMENDED PLAN						AEROJET GENERAL		
CALENDAR YEARS	1970	1971	1972	1973	1974	1975	1976	1977	1978
NSS DEVELOPMENT NSS QUALIFICATION TURBOPUMP DEVELOPMENT TURBOPUMP QUALIFICATION		- <u>F</u>	R- T F	R-1	F		2-5		
EPIC COMPONENT QUAL (LAB) —— EPIC SYSTEM QUAL (E-5) ————		i i i i i i i i i i i i i i i i i i i	DEV			F		C/0 [T]	

[10]

Reliability-Driven Design & Development

- 1. Design maximize reliability
 - Propellant Feed System (PFS) Configuration 2 vs 1 turbopumps
 - Primarily aleatory uncertainty Fault Prevention & Fault Tolerance

2. Development / Test – minimize technical uncertainty

PFS Reliability Analysis Conclusion: Some form of redundancy is required

Reliability-Driven Design & Development

- 1. Design maximize reliability
 - Propellant Feed System (PFS) Configuration 2 vs 1 turbopumps
 - Primarily aleatory uncertainty Fault Prevention & Fault Tolerance

- 2. Development / Test minimize technical uncertainty
 - Reactor Fuel Test Program New fuel design & unique operating conditions
 - Primarily epistemic uncertainty Physics models don't exist yet

"Performance of an NTP engine depends on the ability to demonstrate that the fuel can <u>reliably</u> operate"

- Options for SMART Testing for NTP, January 2022

Proposed Fuel Test Program Methodology

Step 1: Identify & characterize the key **system-level** areas of uncertainty

• **Assumption:** no entirely new field of physics will be discovered during fuel testing

Step 2: Generate 2-4 test alternatives for each parameter

• Focus on variables measurements (e.g. test to failure) rather than attributes measurements (go/no-go)

Step 3: Quantify the predicted uncertainty reduction for each test alternative
Bjorkman's "Uncertainty as Test Value" & Shannon's Information Entropy

Step 4: Generate initial "optimal" testing program

[5,13]

<u>Step 1:</u> Define Uncertainty Parameters

<u>Step 2:</u> Identify Test Alternatives

	Table 5. Comparison of a	a subset of SMART and	existing test facilities an	d capabilities.						
× –	NTP Parameter	Goal	SMART 14-MW TRIGA	SMART ATR-Fuel Driver Core	TREAT	NTREES	MITR	MURR	ATR Reactor Loop	HFIR
dista	Average Power Density (MW/L)	5	0.1	5		>2MW/L (by induction heating only)	< 1	0.303	1	1.7
itile nel s	Thermal Neutron Flux (n-cm ² -s)	1E15	1E14	1E15	~7E12 per MW	No nuclear heating	6E14	6E14	1E15	2.5E15
ofion with dition	Fuel Region or Test Article Length	1 m	0.5 m	1 m	1.2 m active core length, 0.61 m for best flux profile	2.5 m test article length	0.61 m	0.61 m	1 m	0.51 m
J'éti on	Room for 3-Unit Cells or a Fuel/Moderator	7–13 cm	18 cm	13 cm	<6 cm	30 cm	4.572 cm	13.6 cm	16 cm	<6 cm
Temperature	Peak Test Article Fuel Temperature	3000 K+			2700 K	3800 K achieved to date	2500 K		3000 K	2500 K
	Fuel Temperature Ramp Rate in Test Article	20–100 k/sec			100 K/s is in use for current experiments	>100 K/s				
	Lifetime	240 minutes							>24 hours	>24 hours
Duration	Operation Time	20 min. operation with cooldown. Repeat five times			< 40 Sec			Main function is isotope production so not run for short durations	>24 hours	>24 hours
Hydrogen	Hydrogen Pressure through Core	7–11 Mpa			Peak pressure of 1000 psig (~7 Mpa)	Peak pressure of 1000 psig (~7 Mpa)	Static Pressure (has used GH ₂ in rabbits)	Static pressure (has not used GH ₂)		Has flow capabilities but has not used GH ₂
Flove	Hydrogen Mass-Flow Rate	$\sim 2 \text{ g/s per channel}$			Up to 200 g/s total (in progress for 2023)	Max of 250 g/s (by regulation)				
	LEGEND:									

Green: Goal achievable

Yellow: Can obtain useful data or modify to achieve goal Red: Goal not likely

[12]

<u>Steps 3 & 4:</u> Quantify Uncertainty Reduction & Test Program

Currently identifying "most useful" quantification technique

Bjorkman "Test and Evaluation Resource Allocation Using Uncertainty Reduction"

- Shannon's Information Entropy for Uncertainty Quantification
- Heavily relies on SME input for initial variance estimates
- Design of Experiments, Full Factorial Design (3 factors, 2x2x3 levels)

Stress-Strain Interference Theory

- Using historical NERVA data for estimates of initial stress variance, strength mean, and strength variance
- For an assumed stress mean, estimate the required variance reduction

Duration	Hydrogen Pressure	Temperature
Operation Time (20 min)	Max (7 Mpa)	Min (298K)
		Avg (1200K)
		Max (3000K)
	Min (11 Mpa)	Min (298K)
		Avg (1200K)
		Max (3000K)
Lifetime (240 min)	Max (7 Mpa)	Min (298K)
		Avg (1200K)
		Max (3000K)
	Min (11 Mpa)	Min (298K)
		Avg (1200K)
		Max (3000K)

Stress Mean	Stress Variance	Predicted Reliability
0.09	0.03	0.610580882
Strength Mean	0.02	0.663213732
0.098425	0.01	0.80024593
Strength variance	0.005	0.954005714
0		

*Both methods assume normal distributions

14

Conclusions & Next Steps

The NERVA program was perhaps the first to truly embrace "design for reliability"

• Highly credits their program success to this approach

An updated reliability-driven design approach can already have significant impacts to current NTP programs

• E.g. redundant pump system required

Future work involves implementation of uncertainty reduction techniques

Only model as necessary

"It should be noted that no one has ever developed a complete model which rigorously relates all identified parameters to the top reliability requirement. Many reliability programs, however, have been made useless by people who attempted to develop the ultimate reliability model...The cardinal rule for modeling based on NERVA experience is 'KEEP IT SIMPLE'."

- NERVA Probabilistic Design Training Course, 1972

Acknowledgements

This work was supported by NASA's Space Technology Mission Directorate (STMD) through the Space Nuclear Propulsion (SNP) project. The contract grant number is MSFC-UAH 2D0QA.

References

[1] Technical Summary Report of Nerva Program, Phase I Nrx and Xe. Volume IV. Technology Utilization Survey. Publication TNR230V4. Westinghouse Electric Corp., Large, PA. Astronuclear Lab., 1972.

[2] Neuman, J., Van Haaften, D., and Madsen, W. Nuclear Propulsion Systems Engineering. Presented at the Conference on Advanced SEI Technologies, Cleveland, OH, U.S.A., 1991.

[3] Gerrish, H. P. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3. Presented at the Advanced Space Propulsion Workshop (ASPW), Cleveland, OH, 2014.

[4] BRAUN, E. Reliability - Intrinsic or Afterthought. Presented at the 5th Propulsion Joint Specialist, Colorado Springs, CO, U.S.A., 1969.

[5] Engineering Operations Report: Probabilistic Design Training Course. Publication TID/SNA-2020. Aerojet-General Corp., Sacramento, Calif. (USA), United States, 1972.

[6] Simplified Pre-PDR Techniques for Assessing Component Reliability. Publication TID/SNA-3013. Aerojet Nuclear Systems Co., Sacramento, Calif. (USA), United States, 1970.

[7] WANL-1970_PDR Presentation.Pdf. .

[8] RELIABILITY PLAN. Publication TID-26214. Aerojet Nuclear Systems Co., Sacramento, Calif., 1970.

[9] Duncan, D. S., Bryan, W. M., Witcraft, G. M., and Syrek, D. Reliability Allocations, Assessments, and Analysis Report. Volume I. Reliability Model, Predictions and Allocations. Volume II. System Failure-Mode Effects and Criticality Analysis. Volume III. Trend Data. United States, 1971.

[10] Presentation Material for Long-Range Program Plan. Publication RN-PA-0027. Aerojet-General Corp., Sacramento, Calif. (USA), United States, 1969.

[11] Rawlins, S., and Dr. L. Dale Thomas. IAC_2022_Rawlins_Manuscript.Pdf. Presented at the 72nd International Astronautical Congress, Paris, France, 2022.

[12] Lenox, K. E., Burns, D. E., O'Brien, R. C., Todosow, M., Palomares, K. B., Werner, J., Rieco, I., and Searight, W. Options for Subscale Maturation of Advanced Reactor Technologies Testing for Nuclear Thermal Propulsion. Publication INL/RPT-22-65557-Rev000. Idaho National Lab. (INL), Idaho Falls, ID (United States), 2022.

[13] Bjorkman, E. A. Test and Evaluation Resource Allocation Using Uncertainty Reduction as a Measure of Test Value. George Washington University, 2012.

TABLE A-15

NSS FAILURE RATE SUMMARY FOR FAILURE EFFECT

CATEGORIES I'I & IV

	FAILURE MODE	FAILURE PROBABILITY OF MODE	FAILURE GOVERNING PART/PART FAILURE MODE- MECHANISM/FAILURE PROBABILITY	PART FAILURE PROBABILITY DATA SOURCE
FUI	EL ELEMENTS	í		
1.	Reactivity loss exceeds one dollar (NF 000)	.03 🗸	Iuel Element/Bore corrosion/.03	WANL DRM No. 53041
2.	Loss of structural integrity due to structu collapse (NF 0004)	ural 10 ⁻⁵ 🗸	Iuel Element/Severe corrosion/10 ⁻⁵	WANL DRM No. 53041
3.	Pieces of fuel element ejected (NF 5203)	10-10	Fuel Element/Cracking/10 ⁻¹⁰	WANL DRM No. 53041

	Follure Mode	Contribu Cycle Fai Failures	ition to Single lure Probability % of Tatal	Failure Effects Category (Criticality)	Factors To Be Evaluated For Reliability Growth During Detail Design and Assessment Phase
	 Fuel Elements 1. Corrosion due to hot end coating degradation 2. Structural failure allowing bore to interstitial flow 	See Footnote Below	100%	III-B	Further evaluation of coating/matrix interaction. Electrical and reactor test data correlation. Development of NDT for coating bond quality.
2-7	Central Support Element 1. Structural cracking of CSE allowing interstitial flow to attack insulation tube and/or CHESH insulation.	2 x 10 ⁻⁵ .	Negligible	1	Analyses and tests to verify adequacy of these evaluation.
•	NOTE: Composite, 60 cycle 10 hour value. Assumes that best 10 hr/60 cycle corrosion test perfor- mance so far demonstrated for 4000°R will extra- polate to 4250°R and a structural reliability for fuel element crecking of ~0.996. If this were 0.999, fuel reliability = 0.999910 which would meet goal. A slight increase in reactivity limit >\$1.00 has a large effect on the reliability. Uncertainty in cracking and resulting corrosion must be better unduratood to confidently assess reliability.				· · ·

Stress-Strength Interference Theory

- 1. Determine the "stress" function
- 2. Determine the "strength" function
- 3. Calculate the combination function (C/D_c or z-value)
- 4. Find the value of reliability (from tables or MC)

	DESIGN FAILURE MODE ANALYSIS DESIGN ANALYSIS SHEET						
PAJ	TUEL ELEME	NT It. No. Ement	Prepared By Date12/17/70 Revision				
	"Stress" Mean, X _L , Variance, S _L , n or Stress Comment		"Strength" Mean, X _S , Variance, S _S , n or Strength Comment		Design Analysis (Calculated or Estimated Failure Probability or Evaluation Comments)		
	> \$1.00 —		\$1.00	 o.	PRESENT COMPOSITE: P HIGH		
	> \$1.00		\$1.00 0.		PRESENT GRAPHITE: P HIGH		
	0.812	0.10	\$1,00	0.	ESTIMATED FUTURE COMPOSITE: P = 3×10^{-2}		
		BLE DATA TO II	FUTURE GRAPHITE P HIGH				

Fuel Element Stresses & Example

Transverse Stresses:

- Internal Heat Generation Stress
- Coating-Matrix Interaction Stress
- Fuel Bead-Matrix Interaction Stress
- Compressive Bundling Load (negligible)

Axial Stresses:

- Internal Heat Generation
- Coating-Matrix
- Bead-Matrix
- Axial Friction Stress
- Transverse Temperature Gradient
- Core Pressure Drop (neglected)

Heat Generation Stress Example:

1.
$$\sigma_{q}''' \propto \frac{E\alpha q'''}{k}$$

- 2. Calculate standard deviation of $(E\alpha q'''/k)$ from known standard deviations of all parameters by algebra of normal functions.
- 3. Calculate standard deviation of σ_q , at point of maximum combined stress by assuming:

$$\frac{\text{standard deviation } (\sigma_{q'''})}{\text{mean } (\sigma_{q'''})} = \frac{\text{standard deviation } (E\alpha q'''/k)}{\text{mean } (E\alpha q'''/k)}$$

4. Similarly treat all components of stress and combine standard deviations statistically to determine standard deviation of maximum combined stress.