
THE SOFTWARE COMMON DEFECT
ENUMERATION

HTTP://WWW.MISSIONREADYSOFTWARE.COM

ANN.NEUFELDER@MISSIONREADYSOFTWARE.COM

321-514-4659

http://www.missionreadysoftware.com/
mailto:sales@

Copyright Mission Ready Software, 2022

Problem statement

• The Mitre Common Weakness Enumeration (CWE) (https://cwe.mitre.org/)
has provided a means to identify vulnerabilities in an organized fashion so as
to provide
• Examples
• How to identify the vulnerability
• How to mitigate the vulnerability

• Software failure modes and root causes that cause mission failures haven’t
had the same level of organization, aren’t updated on a regular basis and
aren’t as complete

• Software requirements and design reviews are often ineffective because there
isn’t a CDE to guide the review

• Software FMEAs are often ineffective because they don’t cover the range of
root causes

2

Copyright Mission Ready Software, 2022

https://cwe.mitre.org/

Copyright Mission Ready Software, 2022

Early attempts at enumeration

• These authors have published enumerations for software failure modes
• Beizer, Boris Software Testing Techniques. Van Nostrand Reinhold, 1984.
• Kaner, Cem, Jack Falk and Hung Quoc Nguyen (1999). Testing Computer

Software (Second Edition). John Wiley & Sons.
• Binder, Robert V. (2000). Testing Object-Oriented Systems: Models, Patterns, and Tools.

Addison-Wesley.
• Vijayaraghavan, Giri and Cem Kaner. "Bugs in your shopping cart: A Taxonomy."

http://www.testingeducation.org/articles/BISC_Final.pdf
• Whittaker, James A. How to Break Software: A Practical Guide to Testing. Addison

Wesley, 2003.
• Hagar, Jon. Error/Fault Taxonomy Mind Map, 2021.

• These enumerations
• Largely focus mostly on coding related mistakes

• Some are specific to certain applications such as OO development or E-commerce

• Haven’t be kept up to date with new technologies and lessons learned 3

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

How the CDE originated

• Since 1993 Ann Marie Neufelder has analyzed the root causes of almost 1
million software failure events from public and private sources and
categorized them by
• Development artifact that introduced the fault by commission or omission

• The type of software fault – functionality, timing, sequencing, state management, error
handling, data definition, etc.

• The data shows that defects are often misclassified as “coding” related when in
fact they originate in the specifications or design more than 50% of the time
• Ex: If the software engineer didn’t think about an aircraft crossing over the

International Date Line and the code doesn’t work when the date goes
backwards, that’s not a “coding” fault. A “coding fault” is when they write code
to handle the international date line and it doesn’t work correctly.

• A CDE provides for a full range of defect root causes – not just coding related
4

Copyright Mission Ready Software, 2022

The Common Defect Enumeration is intended to minimize
several of the 17 common mistakes that lead to ineffective
software FMEAs

Organizational
mistakes

• None of the software FMEA analysts
have a background in software

• The analysis is not constructed by a
cross functional team

• Conducting the SFMEA too late (most
of these failure modes are too
expensive to fix once the code is
written)

• Conducting the SFMEA without the
proper software deliverables such as
the SRS, SDD, IRS, etc.

• Failing to track the failure modes
and/or make any corrective actions to
the requirements, design, code, use
case, users manual as a result of the
SFMEA

• Failing to tailor the software FMEA to
the highest risk areas and most
relevant failure modes

Faulty
Assumptions
• Assumption that all

failures originate in
a single line of code
or specification

• Assumption that
software works

• Assumption that
software
specifications are
correct and
complete

• Assumption that all
failure modes will
be found and fixed
in testing

• Assumption that all
failure modes are
impossible or
negligible in severity

FMEA Execution mistakes
• Focusing on total failure of the

software - failing to consider small
things that lead to big things going
wrong

• Black box versus functional approach –
analyze what the software does and
not what it is

• Ignoring the 6 dimensions that lead to
software failures - the system, the users
who use the system, the battlefield
environment, and the mission

• Conducting the SFMEA at too high
(system requirements) or too low (lines
of code) a level or architecture

• Mixing functional failure modes with
process failure modes (i.e. fault timing
means the software design not the
software schedule)

• Incorrectly assigning a failure rate or
likelihood

THIS IS EFFECTIVE

6

Analyze the collection of
software requirements and
designs flow against the set
of CDEs
1. Prune the CDEs to

remove things you don’t
have in the software (i.e.
not all applications have
machine learning)

2.Analyze the
specifications and design
as a whole package
against the relevant CDEs

SRS #1
SRS #2
SRS #3
SRS #4
SRS #5
SRS #6

…..

CDE #1
CDE #2
CDE #3
CDE #4
CDE #5
CDE #6

…..

State diagrams
Flow diagrams
Data flow diagrams
Timing diagrams
Sequence diagrams

POPULAR BUT INEFFECTIVE

7

SRS #1
SRS #2
SRS #3
SRS #4
SRS #5
SRS #6

…..

CDE #1
CDE #2
CDE #3
CDE #4
CDE #5
CDE #6

…..

The analysts work through each SRS one
at a time and analyze against statement
each Common Defect Enumeration one
at a time.
This is ineffective because:
1. Only a few of the CDEs pertain to a

single statement
2. Majority of operational defects aren’t

caused by a single faulty statement
(because these are individually
verified prior to deployment)

3. Only the statements with magic
numbers (i.e. timing or accuracy
requirements) should be analyzed this
way and only against the handful of
relevant CDEs

4. It’s more effective to use INCOSE
requirements analyzers to identify
poorly written specifications

POPULAR BUT INEFFECTIVE

8

Line of code #1
Line of code #2
Line of code #3
Line of code #4
Line of code #5
Line of code #6

…..

Line of code
fails to

execute
Line of code
terminates

Analysts work through each line of code
one at a time and analyze against
statement each CDE one at a time.
This is ineffective because:
1. Very few failures are due to a single

line of code
2. When a failure is due to a single line of

code it is usually due to mistakes like
these
• Line of code executes the wrong

command (i.e. has a compilable
typo)

• Line of code manipulates the
wrong data

• Line of code isn’t written properly
but still compiles

3
• Lines of code typically don’t “fail to execute”

unless there is a defect in another line of
code

• If a line of code terminates execution it is
often because there is missing fault handling
or by faulty design

POPULAR BUT INEFFECTIVE

9

CSCI
CSCI fails to

execute
CSCI terminates

This is a very
popular but very
ineffective
hardware centric
approach

The above
failure modes
account for < 1%
of all software
failures

Software doesn’t fail
like hardware. It fails
because of its design
and specifications.

Copyright Mission Ready Software, 2022

Goals for the Common Defect Enumeration

• Identify failure modes and root causes that have been tagged as
root causes to many of the world’s software failure events
• Identify failure modes by level of abstraction

• Failure modes that effect the entire software system
• Failure modes that effect a specific capability
• Failure modes that effect a single software specification statement
• Failure modes that effect the software interfaces

• Organize the CDE so as to provide
• Examples
• How to identify the failure mode
• How to mitigate the failure mode

• Post the CDE published on a wiki type forum that can be updated with the
latest technologies and lessons learned

10

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

The CDE format

• This enumeration is for classifying software failure modes and root causes.

• The common software defect enumeration is as follows:

• <Architectural level> - <Failure Mode> - <Root cause #> - <Artifact> -
<Artifact#>

• Failure mode description: Self explanatory
• Discussion/Example of failure mode: Self Explanatory
• Description: The description is specific to the artifact level. The same root

cause can originate in the requirements, design or code.
• Relevance: The types of systems or applications that see this failure mode

the most
• Guidance: How highly this CDE is recommended for the software failure

mode effects analysis
11

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Architectural
Level ID
The CDE enumeration
begins with the point of
view

• TL - Top level failure modes affect the entire

software application. The root cause is not directly

traceable to one capability or one specification.

These are also called mission level failures. This

viewpoint provides for the widest coverage of the

software but the least level of detail.

• CL - Capability level failure modes and root causes

affect one feature, use case, or capability. Example -

IFF, launch, track, engage, etc.

• SL - SRS level failure modes and root causes are

related to exactly one software requirements

specification that is faulty.

• IL - Interface level. These failure modes and root

causes originate in the interface design specification.

In order to analyze these failure modes, the analysts

will need to have an interface requirements

specification or an interface design document.
12

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Failure Mode and
Root Cause ID
The CDE enumeration
begins with the type of
failure mode

• Failure Mode ID
• SM - State management - The software is unable to maintain

state, executes incorrect transitions, dead states, etc.

• EH - Error handling - The software is unable to identify, and handle
known system faults

• T - Timing - The software executes the right thing too early or too
late

• SE - Sequencing - The software executes the right thing in the
wrong order

• DD - Data definition - The software has wrong or incompatible
definitions of size, type, format, unit of measure, scale, etc.

• PR - Processing - The software is unable to handle peak loading,
extended duration, file I/O etc.

• F - Functionality - The software does the wrong thing perfectly.
The software does not meet the basic reason for the software.

• A - Algorithm – The simplest algorithm is a division of two
numbers. The most common algorithm fault is when the software
engineer fails to write code to handle a denominator that is near
zero.

• U – Usability – Usability faults can and have led to mission faults.

• ML - Machine learning

• Root Cause ID

• This is a unique sequential identifier for multiple root causes
related to the failure mode.

13

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Artifact ID and #

Artifact
Regardless of whether the viewpoint is top level,

capability level, SRS level, or interface level the root

cause can originate in the following activities:

• S - The root cause originates in the software

specification due to omission or commission.

• D - The root cause originates in the software design

due to omission or commission.

• C - The root cause originates in the code. The

specification and design are clearly correct.

Artifact #
This is a unique identifier for multiple root causes

originating from the same artifact. This identifier is not

always used.

14

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Common Defect
Enumerations
that Effect the
Entire Software
Application

• These failure modes don’t
correspond to a single line
of code or single
specification statements

• But rather they effect the
entire software application

• They are typically not
identifiable in code
reviews

• They are related to
common oversights in
engineering that aren’t
detectable until relatively
late in the development

15

Failure mode Top Level CDEs
that apply to a
capability

Root causes

State
management

TL-SM-1 through
TL-SM-12

24 originating in specifications
and 12 originating in code

Error handling TL-EH-1 through
TL-EH-30

30 originating in specifications
and 30 originating in code

Functionality TL-FC-1 through TL-
FC-7

9 originating in specifications
and 10 originating in code

Processing TL-PR-1 through TL-
PR-8

13 originating in specifications
and 14 originating in code

Timing TL-T-1 through TL-
T-7

7 originating in specifications
and 6 originating in code

User TL-U-1 through TL-
U-10

10 originating in specifications
and 10 originating in code

Data definition TL-DD-1 through
TL-DD10

10 originating in specifications
and 10 originating in code

Algorithm TL-A-1 through TL-
A-9

18 originating in specifications
and 9 originating in code

Machine
Learning

TL-M-1 through TL-
M-3

5 originating in sampling
errors, 4 originating in ML
process and 9 in modeling

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Example Top level Enumeration

16

Failure

Mode ID

Root cause Tailoring/

Relevance

Example CDE Description of root cause

TL-SM-1 Prohibited

state

transitions

are executed

Highly

recommended

for all mission

critical

software. This

failure mode

often has

severe

consequences,

and it is

relatively easy

to identify.

Prohibited

transitions are

what lead to

irrecoverable

events such as

inadvertent

missile

launches,

inadvertent

radiation, etc.

TL-SM-1-S-1 The specifications fail to

identify allowed or disallowed

state transitions
TL-SM-1-S-2 The specifications identify

allowed state transitions but

fail to state that the

disallowed state transitions

are prohibited
TL-SM-1-C-1 The specification for

prohibited transitions is clear

but the software does not

meet it.

Copyright Mission Ready Software, 2022

Example of prohibited state
transitions

• As with nearly all state diagrams only the
“allowed” transitions are shown.

• The software failure modes lie in the
“prohibited’ transitions.

• Initializing to online, prelaunch, launch

• Remote to prelaunch, launch, initializing

• Prelaunch to remote, initializing

• Launch to remote, launch to initializing

• Faulted to launch, prelaunch, online,
remote

• The code may allow the prohibited
transitions due to a coding error or poor
specifications.

• Prohibited transitions are rarely tested
because the test engineers only test the
valid transitions.

Launch

Remote
operations

Online
operation

Pre-
launch

Initialization

Copyright Mission Ready Software, 2022

Example SFMEA using CDE

18

Failure

Mode ID

Failure

mode

Specific

root cause

CDE Origin Effect

Se
ve

ri
ty

Likelihood

D
et

e
ct

ab
ili

ty

R
P

N

M
an

if
es

ta
ti

o
n

C
o

n
tr

o
ls

TL-SM-1 Prohibited

state

transitions

are

executed

Transition

from

initializing

to launch is

allowed

T
L

-S
M

-1
-S

-2

The

specifications

identify

allowed state

transitions but

fail to state

that this

transition is not

allowed at all

Inadvertent

launch

10 10 10 10 1000

Copyright Mission Ready Software, 2022

Manifestation – This is a single point failure so manifestation likelihood is 10 out of 10
No controls for this transition exist so controls likelihood is also 10 out of 10.
Likelihood is average of manifestation and control likelihood which averages to 10.
There is no specification or test case for this transition so it won’t be detected in testing.
If this prohibited transition is controlled/mitigated and tested the controls and detectability risk levels
are reduced to 1 so residual RPN is 50.

Copyright Mission Ready Software, 2022

Common Defect
Enumerations
that Effect a
Specific
Capability

• These failure modes don’t
correspond to a single lines
of code or single
specification statements

• But rather they effect a
specific capability or feature
within the software

• Most of the top level failure
modes apply to a specific
capability

• However, at the capability
level there can be problems
due sequencing, consistency
with other capabilities,
timing within the
capabilities that comprise
the application

19

Failure mode Capability Level CDE Top Level CDEs that
apply to a capability

State
management

TL-SM-1 through TL-
SM-12

Error
handling

TL-EH-1 through TL-
EH-30

Functionality CL-FC-1 and CL-FC-2
2 root causes originating in
specifications and 2 in coding

TL-FC-1 through TL-
FC-7

Processing CL-PR-1 1 root cause

originating in specifications and
1 in coding

TL-PR-3, TL-PR7 and
TL-PR-8

Sequencing CL-SE-1 through CL-SE-5
5 root causes originating in
design and 5 in coding

Timing CL-T-1 through CL-T-6
6 root causes originating in
design and 6 in coding

User TL-U-1 through TL-U-
10

Data
definition

CL-DD-1 through CL-DD-5 5
root causes originating in
design and 5 in coding

TL-DD-1 through TL-
DD10

Algorithm CL-A-1 and CL-A-2 TL-A-1 through TL-A-
7Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Example Capability level Enumeration

20

Failure

Mode ID

Failure

mode

description

Tailoring/

Relevance

Discussion/Example

of failure mode

Common

Defect

Enumeration

Description

CL-PR-12 Capability is

interrupted

while

executing

Any mission

or safety

critical

software

capability

The software

specifications fail to

state what is required to

happen when a

capability is

prematurely aborted or

there is a loss of power

while the capability is

executing

CL-PR-12-S-1 It’s a

common

oversight to

neglect to

consider

what the

system is

required to

do when

there is a

loss of

power or

abort while

a capability

is executing

The software

specifications for

interruption of a

capability are clear but

the code does not meet

the specification.

CL-PR-12-C-1

Copyright Mission Ready Software, 2022

Analyze what the
software does AFTER

the interruption –
not the interruption

itself

Copyright Mission Ready Software, 2022

Example SFMEA using CDE

21

Failure

Mode ID

Failure

mode

Specific

root cause

CDE Origin Effect

Se
ve

ri
ty

Likelihood

D
et

e
ct

ab
ili

ty

R
P

N

M
an

if
es

ta
ti

o
n

C
o

n
tr

o
ls

CL-PR-12 Capability is

interrupted

while

executing

Loss of

power

while turret

is unstowed

and in

motion

C
L

-P
R

-1
2

-S
-1

The

specifications

fail to state

what the

software

does after a

loss of power

while turret

is moving

Upon

restoration

of power

the turret

may be

unstowed

and might

move

10 10 10 10 1000

Copyright Mission Ready Software, 2022

Manifestation – This is a single point failure so manifestation likelihood is 10 out of 10
No controls for stowing the turret upon startup.
Likelihood is average of manifestation and control likelihood which averages to 10.
There is no specification or test case for stowing turret after power loss so this failure mode won’t be
detected in test.
If the software stows the turret upon startup and the power loss is tested the RPN reduces to 50

Copyright Mission Ready Software, 2022

Common Defect
Enumerations that
Effect a Specific
Specification
Statement

• These failure modes are caused by a single
specification that is faulty

• Specification statements can cause failure
modes when they are not accurate,
complete or verifiable

• This includes all top level and capability
level specifications that arise in the
specification artifact

22

Failure mode Specification Level CDE

State management SL-SM-1

Functionality SL-FC-1 to SL-FC-6

Timing SL-T-1 through SL-T-5

Data definition SL-DD-1 and SL-DD2

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Examples of Specification level Enumeration

23

Common

defect

enumeration

Failure mode

description

Discussion/Example of failure mode Tailoring/

relevance

SL-T-3 The timing

range has a

lower bound

but no upper

bound

Ex: The software shall wait at least 100ms

after verifying that voltages are up to

transition to the next state. What if the

voltages never come up? Or take several

minutes to come up?

All

requirements

with timing

specifications

SL-T-4 The timing

range has an

upper bound

but no lower

bound

Ex: The software shall take no longer than x

ms to transition to the next state. What if the

transition occurs immediately? Can the rest of

the system handle that?

Copyright Mission Ready Software, 2022

There can be 10,000+ software requirements for some systems. No time to
analyze them all. However, the ones with “magic” numbers are prone to faults
because everyone assumes the number is correct.

Copyright Mission Ready Software, 2022

Examples of Specification level Enumeration

24

Common

defect

enumeration

Failure mode

description

Discussion/Example of failure mode Tailoring/

relevance

SL-DD-1 Accuracy

requirements are

too loose

Accuracy requirements are developed based on

subject matter expertise. Unfortunately, because

are they are defined by systems experts few

software people question their origin or validity.

Example: Faulty requirement: The comparison of

the velocity input from GPS receiver to software-

based estimates was specified to have accuracy of ±

2 m/s when it should have been 1 m/s. All

requirements

with accuracy

specifications

SL-DD-2 Accuracy

requirements are

too tight

The above example could have also been too tight

and that the actual accuracy requirement could

have been > 2 m/s

Copyright Mission Ready Software, 2022

Any time there is an accuracy requirement there are exactly two failure modes.
The requirement is too loose or too tight. Until simulations are conducted to
show that the number is the right number, this failure mode is possible.

Copyright Mission Ready Software, 2022

Common Defect
Enumerations
that Effect a
Software
Interface

• These failure modes are caused by a faulty
software interface

• All interface failures are related to faulty data
definition
• Data is the wrong type, wrong unit of measure, wrong

resolution, wrong scale, missing default values,
missing minimum and maximum values, etc.

25

Failure mode Interface level CDE

Data definition IL-DD-1 and IL-DD-18

Copyright Mission Ready Software, 2022

Interface failures are the most likely when
two different software organizations are
writing the code.

If the two organizations are in different
countries the risk is even greater.

Copyright Mission Ready Software, 2022

Examples of Interface Level Enumerations

26

Failure

mode ID

Failure mode

description

Common defect

enumeration

Description Example

IL-DD-4 The interface

data is the

wrong scale (i.e.

ms vs sec)

IL-DD-4-S-1 The specification does not

have the correct scale or has

no scale at all

One software component

is expecting seconds as an

input but the other is

outputting ms. The

results will be off by 100.

IL-DD-4-C-1 The specification is correct

but the code is not to spec

IL-DD-5 The interface

data is the

wrong unit of

measure (meter

vs. feet)

IL-DD-5-S-1 The specification does not

have the correct unit of

measure or has no unit of

measure at all

The NASA Mars Climate

Orbiter crash

IL-DD-5-C-1 The specification is correct

but the code is not to spec
IL-DD-7 The interface

data has no

default value

IL-DD-7-S-1 The specification does not

have a default value

A “default” value is the

value of a data item on

startup and whenever

there is a failure condition.

If this isn’t defined the

data can become

corrupted.

IL-DD-7-C-1 The specification is correct

but the code is not to spec

These apply to all numerical interface parameters
Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

Summary

• The Common Defect Enumeration
provides the following value to
software engineering and reliability
engineering
• An organized and enumerated list of failure

modes
• The enumerations never change however new

failure modes and root causes can be added
based on lessons learned

• The CDEs aren’t limited to only those failure
modes introduced during the coding activities

• The CDE is posted in a Wiki format
• The CDE can be used for:

• Improving requirements, design and code reviews

• Improving the coverage of a software FMEA

27

Copyright Mission Ready Software, 2022

Copyright Mission Ready Software, 2022

About the Author
• Authored the industry guidance on software FMEA - “Effective Application

of Software Failure Modes Effects Analysis", published for CSIAC, 2014.

• Chairperson of IEEE 1633 Recommended Practices for Software Reliability
Working Group (2016 edition) –See video for more information:
https://www.youtube.com/watch?v=vmW2EM5KkMo&t=18s

• 39 years of software engineering and software reliability experience

• Authored the DoD SOW Language for Software Reliability

• Authored NASA’s Software FMEA and software FTA training webinar

• Authored Intel’s process for evaluating vendors with regards to software

• Co-authored USAF Rome Laboratory “System and Software Reliability
Assurance Notebook", with Boeing Corp.

• Authored “Ensuring Software Reliability”, Marcel-Dekker, 1993.

• Benchmarked 200+ software intensive systems for reliability, on time
delivery and customer satisfaction. See video for more information.
https://www.youtube.com/watch?v=HApDHxtG_Mk&t=1s

• Has analyzed almost 1 million failures due to software and categorized by
failure mode and root cause. See video for more information.
https://www.youtube.com/watch?v=XdrzT8b8qXs&t=20s

• IEEE Lifetime Achievement Award, 2017, Reliability Society.

• Managed small and large software development and test teams
throughout career and has applied virtually every development practice
for almost 40 years

• U.S. Patent 5,374,731 for predictive modeling

• 1983 Graduate of Georgia Tech 28

https://www.youtube.com/watch?v=vmW2EM5KkMo&t=18s
https://www.youtube.com/watch?v=HApDHxtG_Mk&t=1s
https://www.youtube.com/watch?v=XdrzT8b8qXs&t=20s

July 2020 29

HTTP://WWW.MISSIONREADYSOFTWARE.COM

SALES@MISSIONREADYSOFTWARE.COM

321-514-4659

http://www.missionreadysoftware.com/

