
Module 11 – Integrating SW and
HW reliability
Ann Marie Neufelder

Module 1 –
Background and

Introduction

Module 2 – How
AMCOM
evaluates
software

Modules 3a,b,c,d –

Understanding problems

with software early on

a. Software engineering

essentials

b. Specifications and

design

c. Test plans and

procedures

d. Software project

execution

Module 4 – Improving the

Army’s systems requirements

Module 5a,c –Conduct and

evaluate a functional

software FMEA plus

workshop

Module 6a,b – Software FTA
class plus workshop

Module 8 – Software reliability

prediction measurements and

tools

Module 11 – How

to integrate

software and

hardware reliability

predictions

Module 12 – Software reliability

statement of work language

Qualitative track

Quantitative track

Reliability

Block

Diagramming

Class

Module 9 – Software reliability

estimation measurements and

tools

Module 5b

– How to

conduct and

evaluate an

interface

and

detailed

software

FMEA
Module 7 – Software FMEA
and FTA SOW

Software Reliability and Failure Modes Effects Analysis

Training Course Suite

Module 10 – Software reliability

workshop

Module 13 – Make a release

assessment (each milestone

and final)

Reliability and
Software tasks
and how they

intersect

Fault

Tree

Analysis

Class

Agenda

• The value of merging software and hardware
reliability predictions

• Establishing a reasonable top level reliability
goal

• How to reconcile reasonable versus targeted

• How to merge the predictions

• Reliability Block Diagram
• Mission model
• Use case model
• Operational profile model
• Fault tree

• How to establish allocations between HW
and SW

• Tools

• Annex – formulas for computing reliability
when there is redundancy

Copyright Mission Ready Software, 2022
3

The value of merging software and
hardware reliability predictions

If you don’t merge the software predictions with the hardware
predictions you won’t know if system objective has been met

Copyright Mission Ready Software, 2022
4

Reasons to
merge SW

and HW
predictions

• You won’t know if the system
objective has been met or will be
met

• If the system is entirely software
then this step isn’t required
• However, if the duty cycle of each of

the software components is different -
the models may be necessary to
accurately predict the combined
reliability of different software
components.

• System models such as RBDs, fault
trees and Markov models aren’t
complete if they don’t have
software measures integrated

Copyright Mission Ready Software, 2022
5

Definitions

System objective – The targeted MTBF, reliability, availability, etc. for a system composed
of hardware and software

Software objective – The targeted MTBF, reliability, availability, etc. for only the software
portion of the system

System prediction – The forecast of the MTBF, reliability, availability, etc for a system
composed of hardware and software. The prediction may or may not meet the
objective.

Software prediction – The forecast of the MTBF, reliability, availability, etc. for the
software components of the system

Software allocations – The portion of the system objective allocated to each of the
software components as well as the software overall

Copyright Mission Ready Software, 2022
6

Estimate the portion of all system failures

that will be due to software

Why?

▪ Ensures that the system objective considers that percentage

▪ Establishes an initial quantitative target for both hardware and software
reliability

▪ Ensures that the system objective is reasonable/feasible for a system that
is software intensive.

Estimate the
portion of

system failures
due to

software

As a customer, you’d like to have a
ballpark idea of the contribution of the
software so that you can establish a
system goal that is reasonable

Early in the program these are ways that
a customer can bound the percentage of
failures that will be due to software

• $ budgeted for R&D as per a past similar
program or contractor’s proposal

• Number of requirements to be fulfilled by
software versus hardware

• Achievable failure rates
• Past failure history on other similar systems

or a previous version of the system under
analysis

• They are listed from lowest to highest
accuracy

R&D $

A. Identify the R&D budget for
software

B. Identify the R&D budget for
hardware

C. Percentage of failures due to
software = A/ (A+B)

DESCRIPTION BENEFITS/
DISADVANTAGES

% of software failures
due to software
proportional to % of
R&D budget for
software to total R&D
budget

Easy to compute.
Minimizes the possibility
that software will be
allocated zero percent of
the system objective.

Example:

R&D for software is 10M

R&D for hardware is 15M

Portion of system failures
predicted to be due to
software = 10/25 = 40%

Rationale: Software failures are
directly related to software
size. Software size is directly
related to R&D $

Establishing portion of
system failures due to
software

Number of requirements
to be fulfilled by the
software

A. Identify the total customer requirements
tagged to the software

B. Identify the total customer requirements
tagged to the hardware

C. Percentage of failures due to software =
A/ (A+B)

DESCRIPTION BENEFITS/
DISADVANTAGES

% of software failures
due to software
proportional to % of
total requirements

Easy to compute.
Assumes that each
requirement is relatively
equal in complexity.

Example:

There are 2000 customer
requirements to be fulfilled by
the software

There are 3000 customer
requirements to be fulfilled by
the hardware

Portion of system failures
predicted to be due to software =
2000/5000 = 40%

Disadvantage – not all
requirements are equal in
complexity

Establishing portion of
system failures due to
software

Achievable failure
rates

A. Use the fast track model discussed in
Module 8 establish a failure rate for the
software

B. Using any industry method, establish a
failure rate for the hardware

C. Percentage of failures due to software = A/
(A+B)

DESCRIPTION BENEFITS/
DISADVANTAGES

% of software failures
due to software
proportional to it’s
predicted failure rate
versus the failure rate
of the software

Not as accurate as past
history but more accurate
than other models if used
correctly.

Example:

Software failure rate predicted
to be .005 failures/ hour

Hardware failure rate predicted
to be .003 failures/hour

Portion of system failures
predicted to be due to
software = .005/.008 = 62.5%

Rationale: Ball park predictions
are more accurate than
assuming 0 defects due to
software

Establishing portion of
system failures due to
software

Recent past history

A. Add up number of system failures caused by
software in a recent predecessor or similar program

B. Increase A by the 10-12% for each year since the
software was developed

C. Add up number of system failures caused by
hardware in a recent predecessor or similar
program

D. Adjust C by any reductions or increases in hardware
components

E. Percentage of failures due to software = B/ (B+D)

DESCRIPTION BENEFITS/
DISADVANTAGES

% of software failures
due to software
proportional to % of
past % of system
failures adjusted by 10-
12 percent per year

Most accurate method and
easy to compute but
requires failure data from a
historical program.

Example:

On a similar past system there
were 100 failures due to software
over the first 2 years of operation.

There were 150 failures due to
hardware over the first 2 years of
operation.

Historically the portion was 40%
but the system was 7 years old.

At 10% increase per year, the new
system will have about 2 times as
much code or 200 failures.

It’s expected that the number of
HW components are unchanged.

Portion of system failures
predicted to be due to software

= 200/350 = 57%

Establishing portion of
system failures due to
software

Review

You learned that the contribution of software failures to the system
reliability can be ball park estimated with

• Historical data from a predecessor

• Historical data from an industry software reliability prediction model

• Total R&D $ estimated

• Number of software versus hardware requirements

Key takeaway –
• Data is the key to any prediction. Whether it comes from a predecessor

system or an industry prediction model.

• Data is how hardware reliability predictions are established. Software is no
different.

Copyright Mission Ready Software, 2022

13

Identify a realistic system reliability objective

Why?

▪ Wishing don’t make it so

▪ Ensures that the objective reflects all components and not just the hardware

▪ Ensures that the system objective is reasonable for a system that is software intensive.

Inputs

▪ Past history for hardware and software failure contributions

Outputs

▪ A realistic system objective
Copyright Mission Ready Software, 2022

14

Determine the
relevant reliability
metric

As discussed in the
module 8 the first step is
determine which of the
reliability figures of merit
are relevant

Reliability metric When it’s relevant

Failure rate/MTBF Most systems

Probability of
failure over a
mission time -
Reliability

Systems with a defined
mission time such as
missiles, landing gear,
aircraft, ground based
vehicles, ground based
mobile missile launchers

Availability Systems that operate
continually such as
security systems,
surveillance, radar,
satellites

Copyright Mission Ready Software, 2022
15

Process for
identifying a
system
objective

Reliability objectives and allocations
typically evolve

▪ Customer or stakeholder identifies the targeted
system reliability based on its mission objectives

▪ Engineering organization predicts the reliability
for each component in the system

▪ Merges all predictions into one system prediction

▪ Allocates the system objective to each
configuration item

▪ If system objective isn’t feasible alternatives are
investigated

▪ For software

▪ Software COTS considered if possible

▪ Reduced or staged SW features

▪ For hardware

▪ Redundancy

▪ Different parts

▪ Initial objective revised as needed

Copyright Mission Ready Software, 2022
16

Deriving an MTBF objective

• When you have historical data from a predecessor

• When there is no predecessor

• When you have $ or system requirement counts

Establish a system MTBF objective when
there is a predecessor

1. From actual predecessor system MTBF. Determine % of software and
hardware failures in operation . Determine actual software MTTF and
hardware MTBF from that percentage.

2. Multiply number of actual operational software failures by at least 110%
for each year since that predecessor software has been deployed. [B11]

3. Determine how much hardware has changed. Adjust historical hardware
failure count by this percentage.

4. Determine the system MTBF objective by combining the new software
objective from step 2 with the new hardware objective from step 3.

Copyright Mission Ready Software, 2022
18

Example

Problem: A system is being proposed that will be a successor
to an existing system.

The existing system was first deployed 7 years ago. The
average MTBF was 300 hours for the entire system.

Software failures were 40% of the total failures for the
existing system.

The hardware elements are reduced by 10% since several
mechanical functions are now being performed by the
software

The goal is to derive a system MTBF objective for the new
system.

Copyright Mission Ready Software, 2022
19

Example Solution

Compute the software and hardware MTTF for the existing system by applying the
40% and 60% to the known 300 hour MTBF. This assumes that the software and
hardware are independent.

• Software MTTF allocation - 750 hours (300/.4)

• Hardware MTBF allocation -500 hours. (300/.6)

Since the software was developed 7 years ago, first compute its relative size when
compared to the existing system.

• If the software size grows 10% a year it will be about 2 times larger after 7 years.

• Size is inversely proportional to MTTF. Hence software MTTF will likely be 375 hours if
the development practices and all other parameters remain the same other than the size.

Since there is 10% less hardware, its allocation is 550 hours compared to the 500
hours in the predecessor system.

New system prediction = ((1/550) + (1/375))-1 = 223 hours. Or a failure rate of
.004485 failures per hour.

Copyright Mission Ready Software, 2022
20

Establish a system objective when there is not a
predecessor

1. Use an industry model to predict the software reliability

2. Use an industry model to predict the hardware reliability

3. Combine the predictions either by assuming that the software and
hardware is independent or by using one of the methods in this
training class

4. The objective system MTBF is determine by the achievable system
failure rate from step 3.

Copyright Mission Ready Software, 2022
21

Example

Problem: A system is being
proposed

An industry model predicts the
software MTTF to be an average

of 375 hours during operation

An industry model predicts the
hardware MTBF to be an average

of 550 hours during operation

The goal is to derive a system
MTBF objective for the new

system.

Copyright Mission Ready Software, 2022
22

Example Solution with no redundancy and
independence between SW and HW failures

1. Software MTTF objective is 375 hours

2. Hardware MTBF objective is 550 hours

3. If the software and hardware fail independently and there is no
redundancy - then the failure rate objectives can be simply added.
The system objective MTBF is therefore the inverse of the system
failure rate objective.

System objective MTBF is therefore

((1/550) + (1/375))-1 = 223 hours.

Copyright Mission Ready Software, 2022
23

Other methods

• The methods discussed in the previous section that determine the
percentage of failures that will be caused by software versus
hardware can also be used to estimate a system MTBF objective
• R&D $

• Requirements

• These might be useful if there’s no time for predictions and no
predecessor or historical data

Copyright Mission Ready Software, 2022
24

Example using R&D $

1. The predicted R&D budget for the software is 70 Million

2. The predicted R&D budget for the hardware is 50 Million.
The hardware MTBF is predicted to be 550 hours.

3. The hardware is predicted to be 42% of the system so that
means the software will have an MTTF of about 398 hours.

4. That means the system objective MTTF is 231 hours.

Deriving objectives from availability or
reliability objectives

26

Previously, it was illustrated how to derive a
software or hardware MTBF from an objective
system MTBF

In some cases, the system objective may be in
terms of availability or reliability

This section shows how to derive the system
availability or system reliability objective from the
software MTBF objective

Copyright Mission Ready Software, 2022

Establish a system availability objective from
a MTTF objective

1. Start from the objective MTBF derivation as shown in previous steps.

2. Predict the Mean Time To Software Restore using the methods shown in IEEE 1633
(Module 8)

3. Predict the MTTR for the hardware

4. Compute a weighted average of the repair time using the portion of failures
predicted from HW and SW

5. System Availability objective=

System MTBF objective / (System MTBF objective+ (Weighted average of MTTR and MTSWR))

Copyright Mission Ready Software, 2022
27

Example

1. Predicted system MTBF objective is 223 hours.

2. Using the methods in the IEEE 1633 the predicted MTSWR = .75 hours

3. The MTTR is predicted to be .5 hours

4. The portion of the objective failures for software is established at 60%
while the hardware contribution is 40% so that means that normalized
repair time = (.6*.75) + (.4*.5) = .65 hours

5. System Availability objective=

223 hours/ (223 hours+ (.65 hours)) = .997094

Copyright Mission Ready Software, 2022
28

Establish a system reliability objective from a
MTTF objective

1. Start from the objective failure rate derivation as shown in
previous steps.

2. Identify the mission time for the system

3. Compute the reliability objective =

exp(-mission time * system failure rate objective)

Copyright Mission Ready Software, 2022
29

Example

1. The predicted objective failure rate = 1/223 hours =
.004485 failures / hour

2. Predicted mission time is 5 minutes or .08333 hours

3. Compute the reliability objective = exp(-.08333* .004485)
= .999626

Copyright Mission Ready Software, 2022
30

Review

The relevant reliability metric must be chosen first.
• Availability isn’t the best metric for software that has discrete

mission times
• Reliability isn’t the best metric for software that is continually

operating
The process for identifying a system objective is usually iterative
MTBF objectives can be determined from
• Past history from a predecessor
• Achievable failure rates if no predecessor
• The estimated portion of failures from SW/HW (R&D $,

requirements)
Reliability or Availability objectives can be determined from the
MTBF objective

Copyright Mission Ready Software, 2022

31

How to reconcile “realistic” versus
“desired”

What to do if you have a reasonable top level goal and you don’t like it

Copyright Mission Ready Software, 2022
32

The methods shown previously establish
a “reasonable” objective that doesn’t
meet your goals

Copyright Mission Ready Software, 2022
33

Options

• As discussed in Module 8, software reliability is a
function of these things

• As the customer you have control on only 3 of the
above factors

• Requiring the contractor to reduce the defect density
generally won’t work well because

Copyright Mission Ready Software, 2022
34

Ways to reduce size (scope)

If the software features are staged over several small releases the code
has time to be debugged and tested in an operational environment

• You can’t tell the contractor how to develop the code but you can tell them
how often you want software releases. Statistically things go better when the
major new feature releases are no greater than 9 months.

Any high risk software features should be reconsidered for a future
program. Examples of high risk features:

• It’s experimental or hasn’t been done before on any other system

• It’s a very large feature compared to everything else

• The contractor will have difficulty testing the feature in their environment
compared to other features

Rerun the top level estimates until no more size adjustments are possible
then proceed to the next option

Copyright Mission Ready Software, 2022
35

Example

The customer requirements are reviewed and
20% can be offloaded to another time

Since the customer doesn’t have insight into
the size estimates of the software it can only
assume that the size has decreased by 20%

When size decreases by 20% so does the
failure rate

This is a conservative estimate because
decreasing the size by 20% may have an
exponential effect if it means that the project
can be on time.

Copyright Mission Ready Software, 2022
36

Ways to increase reliability growth

Rerun the models discussed in module 8 with more reliability growth
until the objective is met

However, no new features can be introduced during that reliability
growth period, otherwise the MTBF resets as a function of the size of the
new feature

• You can’t have your cake and eat it too

• You can have reliability growth but not as long as you are adding in
new code that hasn’t been used in a real world environment.

Continue to the next option if the extended reliability growth without
features isn’t feasible

Copyright Mission Ready Software, 2022
37

Example

• lp is the failure rate objective that you don’t like

• lf is the failure rate objective that you want

• In our example lp is .0431 failures per hour

• We want lf to be .0001 failures per hour

• From Module 9 we learned that we can forecast
additional test time with the below formula

• Dt = (N0e/ l0e* ln(lp / lf)

• From Module 8 we learned that a typical growth
rate is 6

• From the Module 9 we also know that the growth
rate = ln(1/slope) and slope = l0e / N0e So:

• growth rate = ln(N0e/ l0e)

• Dt = exp(growth rate)* ln(lp / lf)

• Therefore Dt = (exp(6)* ln(.0431 / .0001) = 2427
additional test hours. There are about 168 hours
of work per month.

• So assuming the software is tested on only one
system during normal work hours - the additional
test effort is about 14.4 extra months during which
time no new features can be added.

Dt = (N0e/ l0e* ln(lp / lf)

Dt = additional test hours

N0e = total predicted defects

l0e = failure rate on first day
of testing

lp is the failure rate objective
that doesn’t meet the target
failure rate objective

lf is the target failure rate
objective

Copyright Mission Ready Software, 2022
38

Example

• Let’s assume that 14.4 months
without any new features isn’t
acceptable to the Customer

• Some options for shortening that are
• Have 2 test harnesses available to the

contractor and shorten the time to 7.2 months
• Have 3 test harnesses available to the

contractor and shorten the time to 4.8 months

• Risks associated with shortened growth
• You still have to pay people to staff those tests
• The additional $ of having more test harnesses
• The system has to be operated as it would be

in operation
• There must be variations in operating profiles

to ensure that the code is exercised
• The contractor has to have people on staff to

fix the defects found
• Many software defects are caused by the

software not being fault tolerant to hardware
failures.
• Shortening the reliability growth means that the

hardware is less likely to fail during the growth
test.

Copyright Mission Ready Software, 2022
39

Ways to increase test coverage

Software organizations typically cover the software requirements and that’s all

• Requirements testing typically barely cover 40% of the lines of code, conditions,
decisions, or data. The customer finds the defects in the other 60%.

These tests aren’t relatively expensive and add value – Go-no go, trajectory, zero
value, boundary

• These tests typically require no special instrumentation. .

Fault injection testing is a MUST have for mission critical systems.

Line coverage testing requires automated tools and the development organization
will charge a lot for it. Consider a minimum threshold such as 90%. The cost
between 90% and 100% is typically more than the cost of the first 90%.

This option will require explicit SOW for which the development organization will
be passing the cost on

Copyright Mission Ready Software, 2022
40

Example

• Let’s assume that the SOW is modified to
require fault injection testing, and line
coverage testing.

• As per IEEE 1633 clause 5.6 the risk of the
software not meeting the objective is now
“Very low”
• That’s because 100% of the code is exercised

instead of about 40%

• AND the code is exercised under faulted
conditions as opposed to Happy Day scenarios

• This approach is what is required for FAA
certified software and it is why commercial
aircraft is the most reliable software on
earth even after the 737 Max software
failures.

Copyright Mission Ready Software, 2022
41

Review

You learned that if there is a difference between the realistic objective
and the target objective some options are:

• Recommend that software organization makes more frequent smaller
releases so that the software gets more reliability growth

• Recommend that reliability growth be extended by having more shifts or
more test harnesses and that
• There be no new features introduced during that reliability growth

• The software organization either fix the defects found or document a viable workaround

• The software be exercised as it would in operation

• The scenarios be varied to ensure greater coverage of conditions, decision and data

• The test coverage be increased with
• Go-No Go, Trajectory and boundary testing which is not relatively expensive

• Fault injection testing is mandatory for all mission critical systems

• Line/branch coverage thresholds

• Arbitrarily requiring the software organization to make up the difference
doesn’t work if the difference is more than 5%

Copyright Mission Ready Software, 2022
42

Merge the software and hardware

predictions

Why
Merges software and hardware predictions at the LRU level which is more
accurate than top level objectives

Inputs
Predictions for each software and hardware configuration item in the system

Outputs
A system reliability prediction (differs from an objective which is a goal)

Copyright Mission Ready Software, 2022
43

Merge
software
reliability
predictions

Previous sections covered how to establish a
software allocation at the top software level

In this section, it is shown how to combine
predictions at the LRU level

This type of merging can also be used to
establish allocations for the software and
hardware

These techniques require more knowledge
concerning the system components and LRUs

Hence these techniques may be used once
the system design is complete

Copyright Mission Ready Software, 2022
44

Merge
methods

System reliability block diagram

Mission model

Use case model

Operational profile model

Fault tree model

Copyright Mission Ready Software, 2022
45

System reliability
block diagram
Options for merging predictions

Copyright Mission Ready Software, 2022
46

RBD
Inputs/Outputs

▪ The system reliability block diagram should
already have a listing of each hardware item

▪ Predictions for each software configuration item

▪ Identification of physical software LRUs for each
software configuration item

▪ CSCI is software configuration item. However,
there’s not always 1:1 relationship to physical
software LRU.

▪ One CSCI may have multiple physical LRUs.

▪ While it’s not common, one CSCI may have <1
physical LRU if multiple companies are
developing code for one LRU.

Inputs

▪ System reliability block diagram with software
and hardware

Outputs

Copyright Mission Ready Software, 2022
47

Steps for
adding
software to
an RBD

1. First assess the number of physical software LRUs. These are
executables, applications, Dynamically Linked Libraries (DLLs).

2. If there is only one physical software LRU for all software
CSCIs then there is one big block on the RBD which is in series
with all hardware.

3. Assess relationship between each software LRU and each
hardware configuration item.

4. If one software LRU supports multiple hardware subsystems,
there could be an unnecessary risk due to poor cohesion.

5. Otherwise…For each hardware configuration item

▪ Add the predictions for each of the software LRU to the
reliability block diagram so that each software LRU is in series
with the hardware that it supports

▪ When hardware is redundant, the software is in series with
the entire redundant configuration because the software is
not redundant

Copyright Mission Ready Software, 2022
48

RBD when there is one physical software LRU

▪When software is developed in “big blobs” the RBD can/will
illustrate that software is a single point failure regardless of
redundancy

▪This is an often overlooked and terrible engineering practice

HW

component1
O/S 1

HW

component2

Application

Software

associated with HW1,2,3

O/S 2

HW

component3
O/S 3

Copyright Mission Ready Software, 2022
49

RBD when one physical software LRU
supports multiple hardware subsystems

Identify all physical software LRUs and hardware subsystems

Identify all software components that are associated with > 1 hardware subsystem

These software items may have unrelated functions in the same executable which can have
negative impact on prediction

Partitioning unrelated software programs can reduce system failure rate

Motor
control

Software
Fire

control

Motor
control

Fire
control

Motor
control

SW

Fire
Control

SW

This isn’t good

The code is split into
cohesive

executables. Now
motor control can’t
cause a fire control

failure and vice
versa.

Copyright Mission Ready Software, 2022
50

Reliability Block Diagram when software and
associated hardware are not redundant

HW

component1

Application or COTS

Software #1

associated with HW1

O/S 1

HW

component2

Application or COTS

Software #2

associated with HW2

O/S 2

HW

component3

Application or COTS

Software #3

associated with HW3

O/S 3

Copyright Mission Ready Software, 2022
51

Reliability Block Diagram when software and
associated hardware is redundant

HW

Component 1

Application or COTS

Software #1

associated with HW1

O/S 1

HW

Component 1

HW

Component 1

Copyright Mission Ready Software, 2022
52

Notes
about
Software
redundancy

It’s unlikely that any of the software
components are “redundant”

• Big difference between having multiple copies of
the same software installed and “redundancy”

Software is redundant if and only if
there is N version programming

• Different versions are implemented by different
software organizations to do the same functions

• Generally very expensive

Otherwise, redundancy applies to
hardware and not to software

It should not be “assumed” that
hardware redundancy will address all
software failures

Copyright Mission Ready Software, 2022
53

Mission model
Options for merging predictions

Copyright Mission Ready Software, 2022
54

Mission Reliability Model

▪Used when there is a defined start and end
▪Landing gear
▪Aircraft
▪Space shuttle
▪Dishwashers

Phase I Phase II Phase N

Mode 1

Mode 2

Mode 3

.

Mode M

.

.

Mode 1

Mode 2

Mode 3

.

Mode M

Mode 1

Mode 2

Mode 3

.

Mode M

Copyright Mission Ready Software, 2022
55

Mission Model

ti =

duration
of each
phase i

Zij =
% of time
Mode j is
 utilized in

 phase i

ujk =
Utilization

of CSCI
k

during
mode j

lk =

 failure
rate

of CSCI
k

x x x =

mk =
expected
number

of failures
of CSCI k

Copyright Mission Ready Software, 2022
56

Example of mission model – Step 1

Copyright Softrel, LLC 2021

Mode utilizations

Phase Duration Idle Scan Track Maintenance
Startup 0.1 1 0 0 0
Taxi 0.1 1 0 0 0
Climb 0.2 0.5 0.5 0 0
Loiter 1 0 0.8 0.2 0
Attack 0.3 0 0.333333 0.666666667 0
Return 0.2 0.5 0.5 0 0
Land 0.1 1 0 0 0
Shutdown 0.2 0 0 0 1
Total duration 2.2

Identify the phases
Identify the duration of each phase - ti

Identify the mode utilizations of each mode zi - The sum of mode
utilizations must equal 1 across each phase

Example of mission model – Step 2

Copyright Softrel, LLC 2021

1. Determine the duty cycle of each mode in each phase by
multiplying the phase times ti by the mode utilizations zi

2. Sum up the duty cycles of each mode across all phases

Mode utilizations

Phase Duration Idle Scan Track
Maintena
nce

Startup 0.1 0.1 0 0 0

Taxi 0.1 0.1 0 0 0

Climb 0.2 0.1 0.1 0 0

Loiter 1 0 0.8 0.2 0

Attack 0.3 0 0.1 0.2 0

Return 0.2 0.1 0.1 0 0

Land 0.1 0.1 0 0 0

Shutdown 0.2 0 0 0 0.2
Total duty cycle of
each mode in hours 2.2 0.5 1.1 0.4 0.2

Example of mission model – Step 3

Idle Scan Track Maintenance
Duty cycle of each mode in hours 0.5 1.1 0.4 0.2
Configuration item Active in this mode?
Executive 1 1 1 1
Test 0 0 0 1

Scan 0 1 0 0
Track 0 0 1 0
Calibration 1 0 0 1

Copyright Softrel, LLC 2021

1. Identify which software LRUs are active in each mode.
2. “1” means active and “0” means not active

Example of mission model – Step 4

Idle Scan Track
Mainten
ance

Configuration item
Failure rate
(hours) Failure rate x activation

Executive 0.0001 1 1 1 1
Test 0.00005 0 0 0 1
Scan 0.00001 0 1 0 0
Track 0.00002 0 0 1 0
Calibration 0.00003 1 0 0 1

Copyright Softrel, LLC 2021

1. Identify the predicted failure rate of each of the software
LRUs using the methods in module 8 (early in development)
or module 9 (during testing)

Example of mission model – Step 5

Copyright Softrel, LLC 2021

1. Multiply the LRU failure rates by the activation matrix for each
mode

2. Sum the failure rates of each mode
3. Multiply the failure rate of each mode by the duty cycle of

each mode

Configuration item
Failure rate
(hours) Failure rate x activation

Idle Scan Track Maintenance
Executive 0.0001 0.0001 0.0001 0.0001 0.0001
Test 0.00005 0 0 0 0.00005
Scan 0.00001 0 0.00001 0 0
Track 0.00002 0 0 0.00002 0
Calibration 0.00003 0.00003 0 0 0.00003
Sum of failure rates 0.00013 0.00011 0.00012 0.00018
Duty cycle of each mode 0.5 1.1 0.4 0.2
Failure rate x duty cycle 0.000065 0.000121 0.000048 0.000036

Example of mission model – Step 6

Copyright Softrel, LLC 2021

1. Sum up the failure rate x duty cycle cells for each of the
modes. This is the predicted failures during the mission. In
this example it is .027 failures per hour.

2. Divide the predicted failures per mission by the total mission
time. In this example the total mission time is 2.2 hours. So
the predicted failure rate of the mission for the software is
.00012273 failures per hour

3. The reliability of the mission is exp(-.00012273 * 2.2) =
.99973004

Configuration item
Failure rate
(hours) Failure rate x activation

Failure rate x duty cycle 0.000065 0.000121 0.000048 0.000036

Notes

•This example did not merge in the hardware failure
rates.

•This can be done in step 5

Copyright Softrel, LLC 2021

Use case model
Options for merging predictions

Copyright Mission Ready Software, 2022
64

Use case
model

65

This model combines failure rates by use
case

▪ Identify all software use cases

▪ Predict the size of the code executed for each use
case. Use the models in IEEE 1633 Recommended
Practices for Software Reliability, predict the
reliability metrics for each use case.

▪ Predict the mission time or up time of each use
case

▪ Combine the software use case reliability with the
hardware reliability predictions for hardware that
is active for each use case to establish reliability for
each use case.

▪ Model resembles the mission model except that
instead of predicting failure rate of each CSCI,
predict failure rate of each use case

Copyright Mission Ready Software, 2022

Example

66

Use case
New or modified
1000 SLOC

Predicted failure
rate in hours as per
IEEE 1633

Mission time
in hours

Use case A 100 0.00001 0.2

Use case B 200 0.00002 0.3

Use case C 150 0.000015 0.1

Use case D 50 0.000005 0.9

Use case E 25 0.0000025 0.4

Total 1.9
There are 5 use cases. The size of each use case is predicted based on the
code that’s active for that use case. Using the size and the models
discussed in IEEE 1633 the failure rate in hours of each use case is predicted.
The mission time of each use case is also estimated based on the mission
profile

Copyright Mission Ready Software, 2022

Example

67
Copyright Mission Ready Software, 2022

Use case

Predicted
failure
rate in
hours as
per IEEE
1633

Failure rates of hardware configuration items active in this use case
execution in failures per hour

HW A HW B HW C HW D HW E HW F HW G
Use case A 0.00001 0.0001 0.000011 0.000001
Use case B 0.00002 0.00002 0.000011 0.000001
Use case C 0.000015 0.000001 0.000001
Use case D 0.000005 0.000015 0.000002 0.000001
Use case E 0.0000025 0.0001 0.000001 0.000002 0.000001

Next identify which hardware configuration items are active in
each use case. Put the HW failure rate on the matrix if it’s active
in that use case.

Example

68
Copyright Mission Ready Software, 2022

Use case

Total
failure rate
of use case

Predicted
failure
rate in
hours as
per IEEE
1633

Failure rates of hardware configuration items active in this use case
execution in failures per hour

HW A HW B HW C HW D HW E HW F HW G

Use case A 0.000122 0.00001 0.0001 0.000011 0.000001

Use case B 0.000052 0.00002 0.00002 0.000011 0.000001
Use case C 0.000017 0.000015 0.000001 0.000001

Use case D 0.000023 0.000005 0.000015 0.000002 0.000001
Use case E 0.0001065 0.0000025 0.0001 0.000001 0.000002 0.000001

Sum up all failure rates in each use case

Example

69
Copyright Mission Ready Software, 2022

Predicted failures of each use case = use case failure rate * mission time of use case

Total predicted failures = .000105

The divide by the total mission time of 1.9 hours = .0000555 FPH

Reliability of mission = exp(-1.9 hours * .0000555 FPH) = 99.9895%

Use case
Sum of HW and SW failure rates

for each use case
Mission time
of use case

Predicted
failures over
mission

Use case A 0.000122 0.2 0.0000244

Use case B 0.000052 0.3 0.0000156

Use case C 0.000017 0.1 0.0000017

Use case D 0.000023 0.9 0.0000207

Use case E 0.0001065 0.4 0.0000426

Total 1.9 0.000105
Failure rate = failures/mission
time 0.000055

Reliability of mission 99.9895006%

Operational
profile model
Options for merging predictions

Copyright Mission Ready Software, 2022
70

Operational
Profile Model

▪Used when
▪> 1 end user type

and/or more
than one
customer type

▪How the
software is used
varies by end
user/customer

Profile Description

Customer Used to describe
multiple customers

User profile Used to describe
multiple user types

System
mode
profile

Used to describe
behavior of execution

Functional
profile

Used to describe
relative usage of
different software
components

Copyright Mission Ready Software, 2022
71

Operational Profile Model

Customer type
 1

duty cycle

Customer type
2

duty cycle

Customer type
n

duty cycle

.

.

.

User 1 duty cycle

User 2 duty cycle

User n duty cycle

The sum of the customer
duty cycles must = 1

User 1 duty cycle

User 2 duty cycle

User n duty cycle

User 1 duty cycle

User 2 duty cycle

User n duty cycle

The sum of the user
duty cycles must = 1
within each customer

.

.

.

Mode 1

Mode 2

Mode N

▪ There can be any number
▪ of modes for each user
▪ There can be any number of user

types
▪ There can be any number of

hardware or software items active
in any mode

Failure rate of
HW or SW item

active in this mode

Failure rate of
HW or SW item

active in this mode

Failure rate of
HW or SW item

active in this mode

The sum of the mode
duty cycles within
each user= 1

Multiply the applicable duty cycles by the
failure rates and sum

Copyright Mission Ready Software, 2022
72

Example of a commercial desk top printer

F
a
x

in
g

F
a
x

in
g

0% 0%

L
e
g

a
l

si
z
e

1
1

x
1

7

8
.5

x
1

1

A
u

to
 f

e
e
d

M
a
n

u
a
l

A
u

to
 d

ia
l

M
a
n

u
a
l

d
ia

l

L
e
g

a
l

si
z
e

1
1

x
1

7

8
.5

x
1

1

A
u

to
 f

e
e
d

M
a
n

u
a
l

 L
e
g

a
l

si
z
e

1
1

x
1

7

8
.5

x
1

1

A
u

to
 f

e
e
d

M
a
n

u
a
l

 L
e
g

a
l

si
z
e

1
1

x
1

7

8
.5

x
1

1

A
u

to
 f

e
e
d

M
a
n

u
a
l

A
u

to
 d

ia
l

M
a
n

u
a
l

d
ia

l

8
0

%

0
%

2
0

%

5
0

%

5
0

%

2
0

%

8
0

%

5
%

3
0

%

6
5

%

6
0

%

4
0

%

1
5

%

1
5

%

7
0

%

0
%

1
0

0
%

1
5

%

1
5

%

7
0

%

5
0

%

5
0

%

0
%

1
0

0
%

Operational

profile 1
1

.2
0

%

0
.0

0
%

2
.8

0
%

3
.5

0
%

3
.5

0
%

1
.4

0
%

5
.6

0
%

1
.2

6
%

7
.5

6
%

1
6

.3
8

%

1
0

.0
8

%

6
.7

2
%

1
.0

7
%

1
.0

7
%

4
.9

9
%

0
.0

0
%

0
.3

8
%

0
.3

4
%

0
.3

4
%

1
.5

8
%

3
.3

8
%

3
.3

8
%

0
.0

0
%

1
3

.5
0

%

User profile

60%

Customer

profile 70%

25% 75%

P
ri

n
ti

n
g

S
c
a
n

n
in

g

P
ri

n
ti

n
g

S
c
a
n

n
in

g

F
a
x

in
g

P
ri

n
ti

n
g

40%

Small businesses Copy shops

30%

Walk in customer Copy shop employee
Professionals (lawyers,

accountants, etc.)

High tech

professionals

(engineers, computer

P
ri

n
ti

n
g

S
c
a
n

n
in

g

F
a
x

in
g

95% 5% 10% 30% 60%

Functional

profile
S

c
a
n

n
in

g

50% 25% 25% 60% 40%

System mode

profile

In this example the software with the biggest duty cycle is printing high tech documents (i.e.
diagrams) on 8.5x11, faxing in manual dial mode and printing legal documents on legal sized
paper . Yet the software test team didn’t think to test either of these cases. The software
stalled when printing the very large high tech documents and the very long legal documents.

Copyright Mission Ready Software, 2022

73

Example of a commercial desk top printer
Customer profile Small business Copy shop

Professional High tech Walk in Store employee
Customer profile duty cycle 0.7 0.7 0.3 0.3
User duty cycle 0.4 0.6 0.25 0.75
Print duty cycle per user 0.5 0.6 0.95 0.1
Legal sized paper duty cycle 0.8 0.05 0.15 0.15
11x17 paper duty cycle 0 0.3 0.15 0.15
8.5x11 paper duty cycle 0.2 0.65 0.7 0.7
Scan duty cycle per user 0.25 0.4 0.05 0.3
Auto scan 0.5 0.6 0 0.5
Manual scan 0.5 0.4 1 0.5
Fax duty cycle per user 0.25 0 0 0.6
Auto fax 0.2 0 0 0
Manual fax 0.8 0 0 1

Example of a commercial desk top printer

The profiles are rearranged so that duty cycle of each function is
on a different row
Multiply the duty cycle for each function by its user duty cycle
and customer profile duty cycle as shown on next page

Copyright Mission Ready Software, 2022
74

Example of a commercial desk top printer

Example of a commercial desk top printer

Professional
High
tech Walk in Employee

Total duty
cycle

Total 0.28 0.42 0.075 0.225 1
Legal sized paper duty cycle 0.112 0.0126 0.010688 0.003375 0.1386625
11x17 paper duty cycle 0 0.0756 0.010688 0.003375 0.0896625
8.5x11 paper duty cycle 0.028 0.1638 0.049875 0.01575 0.257425
Auto scan 0.035 0.1008 0 0.03375 0.16955
Manual scan 0.035 0.0672 0.00375 0.03375 0.1397
Auto fax 0.014 0 0 0 0.014
Manual fax 0.056 0 0 0.135 0.191
All 0.28 0.42 0.075 0.225 1
• The duty cycle is now summed up for each user and each function

• Next identify the hardware and software elements

• Sheet handler

• Scan bed

• Paper tray

• Fax keyboard

• Telephone port

• Print software

• Scan software

• Fax software
Copyright Mission Ready Software, 2022

75

Example of a commercial desk top printer

Example of a commercial desk top printer

• Determine the predicted failure rates for both software and hardware

• Identify which configuration items are active as shown above

Total
duty
cycle Sh

e
et

 h
an

d
le

r

Sc
an

 b
e

d

P
ap

e
r

tr
ay

Fa
x

ke
yb

o
ar

d

Te
le

p
h

o
n

e
p

o
rt

P
ri

n
t

C
SC

I

Sc
an

 C
SC

I

Fa
x

C
SC

I

Predicted Failure
rate .0005 .0009 .000008 .000007 .000001 .0002 .0015 .00002

Legal sized paper
duty cycle

0.1386625 x x x x

11x17 paper duty
cycle 0.0896625 x x x x

8.5x11 paper duty
cycle 0.257425 x x x x

Auto scan 0.16955 x x x

Manual scan 0.1397 x x

Auto fax 0.014 x x x x x

Manual fax 0.191 x x x x x

Copyright Mission Ready Software, 2022
76

Example of a commercial desk top printer

Example of a commercial desk top printer

• Sum multiply the failure rates for each component to establish
the duty cycle per configuration item

Duty
cycle per
function

mode Sh
e

et
 h

an
d

le
r

Sc
an

 b
e

d

P
ap

e
r

tr
ay

Fa
x

ke
yb

o
ar

d

Te
le

p
h

o
n

e
p

o
rt

P
ri

n
t

C
SC

I

Sc
an

 C
SC

I

Fa
x

C
SC

I

Predicted Failure
rate .0005 .0009 .000008 .000007 .000001 .0002 .0015 .00002

Legal sized paper
duty cycle

0.1386625 1 1 1 0 0 1 0 0

11x17 paper
duty cycle 0.0896625 1 1 1 0 0 1 0 0

8.5x11 paper
duty cycle 0.257425 1 1 1 0 0 1 0 0

Auto scan 0.16955 1 1 0 0 0 0 1 0

Manual scan 0.1397 0 1 0 0 0 0 1 0

Auto fax 0.014 1 1 0 1 1 0 0 1

Manual fax 0.191 1 1 0 1 1 0 0 1

Duty cycle per CI 0.8603 1 0.48575 0.205 0.205 0.48575 0.30925 0.205

Copyright Mission Ready Software, 2022
77

Example of a commercial desk top printer

Example of a commercial desk top printer

• Compute the adjusted failure rate for each configuration item
and then add all for a total failures pe hour

Sh
e

et

h
an

d
le

r

Sc
an

 b
e

d

P
ap

e
r

tr
ay

Fa
x

ke
yb

o
ar

d

Te
le

p
h

o
n

e

p
o

rt

P
ri

n
t

C
SC

I

Sc
an

 C
SC

I

Fa
x

C
SC

I

Failure
rate 0.0005 0.0009 0.000008 0.000007 0.000001 0.0002 0.0015 0.00002
Duty cycle 0.8603 1 0.48575 0.205 0.205 0.48575 0.30925 0.205
Adjusted
failure
rate

4.3015
E-4 0.0009 3.886 E-6 1.435 E-6 2.05 E-7

9.72E-
05 4.64 E-4 4.1E-6

Total 0.001900801 failures per hour

Copyright Mission Ready Software, 2022
78

Fault tree model
Options for merging predictions

Refer to the Software Fault Tree
Analysis class for more
information

Copyright Mission Ready Software, 2022
79

Review
You learned several techniques for merging software and hardware
predictions

• Reliability Block Diagram – The software LRU is in series with the hardware it
support

• Mission model, Use case Model, Operational Profile model – These merge
hardware and software predictions based on their corresponding duty cycle

• Fault tree – Merge the software failure rates onto a system fault tree

• We did not cover the Markov model which is in the System Software
Reliability Assurance Notebook, 1997, USAF Rome Labs.

• Pros and Cons
• Use case may be more specific and therefore more accurate
• Depends on the software group being able to estimate size by use case
• Mission model might be needed if software group isn’t estimating by use case
• OP model useful if multiple user roles or when the user roles don’t have same

duty cycle
• Fault tree model is useful if that’s how they are predicting the hardware reliability
• Markov model is useful for a continuously operating system (security,

surveillance, etc.). Only if the contractor has a Markov model tool.

Copyright Mission Ready Software, 2022
80

Allocate the top software objective

to the software LRUs and hardware LRUs

Why
It allows for different software/hardware groups to work towards a
goal

Inputs
Predictions for each software configuration item in the system

Outputs
A portion of the overall system objective that must be met by a
particular CSCI or HWCI Copyright Mission Ready Software, 2022

81

Methods for
allocating
down to each
software LRU

▪ Start with predictions of each
LRU

▪ Allocations are based on relative
percentage of each LRU to
system objective

Bottom up

▪ Each LRU is allocated portion of
its subsystem allocation

▪ Each LRU is allocated portion of
either HW or SW allocation

Top down methods

Allocations to the CSCI or
HWCI level are done for
the purposes of
establishing goals for each
engineering department
to works towards.

It does not matter to the
customer how they do the
allocation, only that they
have identified a way for
each engineering
organization to works
towards their portion f the
goal.

Copyright Mission Ready Software, 2022
82

Bottom up
allocations

▪Bottom up allocations start with the predictions of every system
component including software

▪Every prediction is then allocated based on its relative prediction

▪Advantages of bottom up allocation
▪ Each software or hardware LRU allocation depends only on its portion of

the total system

▪ So, if the SW portion was computed incorrectly, each software LRU is still
allocated based on its contribution to the system objective

Software
configuration itemSoftware

configuration itemSoftware
configuration itemSoftware

configuration itemSoftware
configuration item

Software
configuration itemSoftware

configuration itemSoftware
configuration itemSoftware

configuration itemHardware
configuration item

System failure rate,
MTBF objective

System reliability
objective

System availability
objective

Copyright Mission Ready Software, 2022
83

Bottom up
allocation
example

▪ These are the predicted failure rates for each component
in the desktop printer

▪ The objective is .001 failures per hour for the desktop
printer

▪ The allocations are established both as unweighted and
weighted by the operational profile

▪ The unweighted allocation doesn’t take into
consideration how much the configuration item is used

▪ The weighted allocation is preferred

Sheet
handler

Scan bed
Paper
tray

Fax
keyboard

Telephone
port

Print CSCI Scan CSCI Fax CSCI total

Failure rate
per hour not
weighted by
duty cycle 0.0005 0.0009 8E-06 7E-07 1E-06 0.0002 0.0015 0.00002 0.003136

Allocation
unweighted 1.59E-04 2.87E-04 2.55E-06 2.23E-06 3.19E-07 6.38E-05 4.78E-04 6.38E-06 0.001

Failure rate
per hour
weighted by
duty cycle 4.3015 E-4 0.0009 3.89E-06 1.435 E-6 2.05 E-07 9.715 E-05 4.63875E-04 4.1E-06

1.900801
E-03

Allocation
weighted by
duty cycle 2.26E-04 4.73E-04 2.04E-06 7.55E-07 1.08E-07 5.11E-05 2.44E-04 2.16E-06 0.001

Copyright Mission Ready Software, 2022
84

Top down allocation method #1

▪ Method #1 - Each LRU allocation is based on its portion of the subsystem
comprising the system

▪ Advantage of option #1

▪ If the subsystems are being developed by multiple contractors or sites,
this approach allows for each subsystem versus HW/SW allocation

Copyright Mission Ready Software, 2022

85

Example of top
down allocation

method #1

▪There are 3 subsystems in a system

▪Based on past history Sub-system A will have half the failures, B
will have 37.5% and C will have 12.5%

▪The goal is a failure rate of .0001 failures per hour for the entire
system

▪Each subsystem receives a proportionate amount of the system
goal

▪Next the subsystem goal is allocated down to the sub-system
components using past historical data

Subsystem Failures from
past history

Relative
portion of
objective

Allocation

A 100 50% .00005

B 75 37.5% .0000375

C 25 12.5% .0000125

Copyright Mission Ready Software, 2022
86

Example of top
down allocation

method #1

▪Sub-system A,B
and C are further
allocated to their
HW and SW
components
based on past
field data

Subsystem
Failures from
past history

Relative
portion of
objective

Allocation

A 100 50.00% 0.00005
HWA1 20 20.00% 0.00001
HWA2 25 25.00% 0.0000125
HWA3 5 5.00% 0.0000025
SWA1 50 50.00% 0.000025
B 75 37.50% 0.0000375
HWB1 40 53.33% 0.00002
HWB2 10 13.33% 0.000005
SWB1 10 13.33% 0.000005
SWB2 15 20.00% 0.0000075
C 25 12.50% 0.0000125
HWC1 10 40.00% 0.000005
HWC2 5 20.00% 0.0000025
SWC1 10 40.00% 0.000005

For each of the subsystems, use the past failure data to determine a percentage
allocation and then multiply by the failure rate allocation for the subsystem

Copyright Mission Ready Software, 2022
87

Top down allocation method #2
▪ Method #2 Each LRU allocation is based on its portion of the HW or SW allocation

▪ Advantages - If all of the software LRUs are being developed by one organization this
allocation method could be easier to manage

▪ Disadvantages

▪ Total software allocation is established by the “leftover” method which means it gets
whatever is leftover from the hardware. This method is not recommended unless
there is sufficient evidence that the software portion of the allocation is feasible

Copyright Mission Ready Software, 2022

88

Example of top
down allocation

method #2

▪Using the same example, in the recent past the hardware
accounted for 60% of the total failures while the software
accounted for 40%

▪So
▪ All hardware LRUs combined must meet .6 * .0001 failures per hour

▪ All software LRUS combined must meet .4 * .0001 failures per hour

▪The decomposition to each software LRU is shown next

LRUs
Demonstrated
failures on past
system

Relative
portion of
the system
objective

Allocated failure
rate in hours

HW 115 58% 0.0000575

SW 85 43% 0.0000425

Copyright Mission Ready Software, 2022
89

Example of top down allocation method #2

▪ The software received an allocation of the system of .0000425 failures
per hour

▪ Each software configuration item receives its portion of the SW
objective based on either its past history or it’s predicted failure rate

▪ Since the predictions take into account the most recent size estimations,
the predictions and are almost 18% higher than the historical data

▪Using the relative portions in the second to last column corrects the
relative difference between predicted and historical but does not
correct the absolute difference. The software components are likely to
be under predicted by a combined total of 17.6%.

SW
LRU

Demonstrated
failures on
past system

Relative
portion of
the system
objective

Allocated
failure rate
from past
history

Predicted
failure rate in
hours

Relative portion
of the system
objective

Allocated failure
rate from
prediction in hours

SWA1 40 47% 0.00002 0.000023 46% 0.00001955
SWB1 22 26% 0.000011 0.000017 34% 0.00001445
SWB2 17 20% 0.0000085 0.000006 12% 0.0000051
SWC1 6 7% 0.000003 0.000004 8% 0.0000034
Total 85 1 0.0000425 0.00005 1 0.0000425

Copyright Mission Ready Software, 2022
90

Determine
whether
software or
hardware
configuration
items can
meet objective

▪ Whether or not the
objective is feasible with
given time and budget

▪ Whether or not the
objective is feasible with any
level of time and budget

Once the
objective has
been driven

down to each
software

component
determine

▪ Module 8 and Module 9
discuss tradeoffs that can be
made when the allocation
isn’t feasible

Since
software
grows at

about 10-12%
per year, the

objective may
not be

feasible

If the allocation is
more than 10% from
past history or the
predictions it’s likely
infeasible

Copyright Mission Ready Software, 2022
91

Perform
tradeoffs
when
objective
cannot be
met

▪ Allocated versus predicted reliability figures of merit

▪ Known development practices as per the survey
models

Inputs

▪ “What if” scenarios

▪ Adjustments to system architecture

▪ Compartmentalizing software based on hardware
it supports

▪ Decomposition of any “big blob” software LRUs

▪ Adjustments to software LRUs shown previously

▪ Adjustments for effective size

▪ Adjustments for defect density (inherent risks,
personnel, techniques, process)

▪ Adjustments for reliability growth

Outputs

Copyright Mission Ready Software, 2022
92

Review

You learned a few methods for allocating a system reliability objective
down to the software and hardware LRUs:

Bottom up – Conduct predictions for every LRU. The allocation for
every LRU (hardware or software) is directly proportional to the
predicted for the LRU divided by the sum of all of the predictions for
every LRU. If the methods for prediction are modern, use historical
data and are conducted properly this can be the most accurate
relatively speaking.

Top Down –

#1 – Top down objective allocated to each subsystem which is then
allocated to software and hardware LRUs using any method. For
multiple organizations this is easiest to manage.

#2 – Top down objective allocated to HW and SW. Each LRU allocation
is then allocated from either the HW or SW allocation. This is least
preferred recent data is used to establish the allocation to all software.

Copyright Mission Ready Software, 2022

93

Using Excel

See worksheets that come with this class

Copyright Mission Ready Software, 2022
94

Options for trending data in
Microsoft Excel

See the integrating software and hardware
reliability spreadsheet

Copyright Mission Ready Software, 2022
95

Conclusions

Copyright Mission Ready Software, 2022
96

In this class you learned

The value of integrating
software and hardware
reliability predictions

How to merge the
software and hardware
predictions

How to evaluate the
results and identify
alternatives if the
feasible goal isn’t the
target goal

How to establish a
feasible system
reliability objective

The tools that you can
use

Copyright Mission Ready Software, 2022
97

References

▪ [1] Neufelder, A, “The Cold Hard Truth
About Software Reliability", Edition 6.e,
SoftRel, LLC, 2014.

▪ [2] System Software Reliability Assurance
Guidebook, Sections 4 and 5, P. Lakey, A.
Neufelder, 1995, produced for Rome
Laboratories.

▪ [3] Rome Laboratory RL-TR-92-15 Reliability
Techniques for Combined
Hardware/Software Systems, 1992, Rome
NY.

98Copyright Mission Ready Software, 2022

Annex

Reliability block diagramming formulas

99

Computing reliability [3]

• The reliability of a group of redundant components is:

 k

R(t) = S e-l
i
t
 P (lj / (lj - li))

 i=1 j=1

 j<>i

• If all components have the same failure rates then:

 k-1

R(t) = e-lt
 S (lti /i!)

 i=0

100

Computing failure rate[3]

• When the individual component failure rates are different, the failure
rate of the group is a constant based on time to first failure:

 k
lsys = 1 / (S (1/ li)
 i=1
• When the individual component failure rates are different, the

instantaneous failure rate of the group is:
 k-1
lsys(t) = l / ((k-1)! S ((l t)i+1-k

 / i!)
 i=0

• The effective failure rate is a constant equal to l/k.
• Weight all terms except for i=1 with probability of the switch from

one component to another failing.
• Also consider that there are other errors which can result from the

acceptance test:
• 1 - Acceptance test rejects result when it was acceptable
• 2 - Acceptance test accepts and unacceptable result

101

Blocks in
series

Rsystem= R1*R2..Rn
N = number of

components in series

When software is part
of a system, it will be

in series with it’s
associated hardware

Reliability of an
individual

component=

exp(-lt)
Where l = failure rate

of that component
and t = mission time.

102

Reliability
Blocks in
Parallel

Two components in parallel

Rsystem =R1R2 + R1Q2 + Q1R2 + Q1Q2

Where Q = probability of component
failure

The sum of these must add to 1

If only one component success is required
for system success then

Rsystem = 1 –Q1Q2= R1R2 + R1Q2 + Q1R2

103

Standby
redundancy

Primary and secondary
components are in parallel

with each other and in series
with switching mechanism

Function of

Reliability of
primary

component

Reliability of
secondary

component

Reliability of
switching

mechanism

104

Standby
Redundancy

If switching is perfect the reliability
of primary and backup are the same
then

n-1

Rsystem = S (lt) i / i!) e(-lt)

 i=0

Where i= number of redundant
components

105

M out n redundancy

▪Rsystem =

 N
 S (N

k) R
k QN-k

 k=m

106

	Slide 1: Module 11 – Integrating SW and HW reliability
	Slide 2
	Slide 3: Agenda
	Slide 4: The value of merging software and hardware reliability predictions
	Slide 5: Reasons to merge SW and HW predictions
	Slide 6: Definitions
	Slide 7: Estimate the portion of all system failures that will be due to software
	Slide 8: Estimate the portion of system failures due to software
	Slide 9: R&D $
	Slide 10: Number of requirements to be fulfilled by the software
	Slide 11: Achievable failure rates
	Slide 12: Recent past history
	Slide 13: Review
	Slide 14: Identify a realistic system reliability objective
	Slide 15: Determine the relevant reliability metric
	Slide 16: Process for identifying a system objective
	Slide 17: Deriving an MTBF objective
	Slide 18: Establish a system MTBF objective when there is a predecessor
	Slide 19: Example
	Slide 20: Example Solution
	Slide 21: Establish a system objective when there is not a predecessor
	Slide 22: Example
	Slide 23: Example Solution with no redundancy and independence between SW and HW failures
	Slide 24: Other methods
	Slide 25: Example using R&D $
	Slide 26: Deriving objectives from availability or reliability objectives
	Slide 27: Establish a system availability objective from a MTTF objective
	Slide 28: Example
	Slide 29: Establish a system reliability objective from a MTTF objective
	Slide 30: Example
	Slide 31: Review
	Slide 32: How to reconcile “realistic” versus “desired”
	Slide 33: The methods shown previously establish a “reasonable” objective that doesn’t meet your goals
	Slide 34: Options
	Slide 35: Ways to reduce size (scope)
	Slide 36: Example
	Slide 37: Ways to increase reliability growth
	Slide 38: Example
	Slide 39: Example
	Slide 40: Ways to increase test coverage
	Slide 41: Example
	Slide 42: Review
	Slide 43: Merge the software and hardware predictions
	Slide 44: Merge software reliability predictions
	Slide 45: Merge methods
	Slide 46: System reliability block diagram
	Slide 47: RBD Inputs/Outputs
	Slide 48: Steps for adding software to an RBD
	Slide 49: RBD when there is one physical software LRU
	Slide 50: RBD when one physical software LRU supports multiple hardware subsystems
	Slide 51: Reliability Block Diagram when software and associated hardware are not redundant
	Slide 52: Reliability Block Diagram when software and associated hardware is redundant
	Slide 53: Notes about Software redundancy
	Slide 54: Mission model
	Slide 55: Mission Reliability Model
	Slide 56: Mission Model
	Slide 57: Example of mission model – Step 1
	Slide 58: Example of mission model – Step 2
	Slide 59: Example of mission model – Step 3
	Slide 60: Example of mission model – Step 4
	Slide 61: Example of mission model – Step 5
	Slide 62: Example of mission model – Step 6
	Slide 63: Notes
	Slide 64: Use case model
	Slide 65: Use case model
	Slide 66: Example
	Slide 67: Example
	Slide 68: Example
	Slide 69: Example
	Slide 70: Operational profile model
	Slide 71: Operational Profile Model
	Slide 72: Operational Profile Model
	Slide 73: Example of a commercial desk top printer
	Slide 74: Example of a commercial desk top printer
	Slide 75: Example of a commercial desk top printer
	Slide 76: Example of a commercial desk top printer
	Slide 77: Example of a commercial desk top printer
	Slide 78: Example of a commercial desk top printer
	Slide 79: Fault tree model
	Slide 80: Review
	Slide 81: Allocate the top software objective to the software LRUs and hardware LRUs
	Slide 82: Methods for allocating down to each software LRU
	Slide 83: Bottom up allocations
	Slide 84: Bottom up allocation example
	Slide 85: Top down allocation method #1
	Slide 86: Example of top down allocation method #1
	Slide 87: Example of top down allocation method #1
	Slide 88: Top down allocation method #2
	Slide 89: Example of top down allocation method #2
	Slide 90: Example of top down allocation method #2
	Slide 91: Determine whether software or hardware configuration items can meet objective
	Slide 92: Perform tradeoffs when objective cannot be met
	Slide 93: Review
	Slide 94: Using Excel
	Slide 95: Options for trending data in Microsoft Excel
	Slide 96: Conclusions
	Slide 97: In this class you learned
	Slide 98: References
	Slide 99: Annex
	Slide 100: Computing reliability [3]
	Slide 101: Computing failure rate[3]
	Slide 102: Blocks in series
	Slide 103: Reliability Blocks in Parallel
	Slide 104: Standby redundancy
	Slide 105: Standby Redundancy
	Slide 106: M out n redundancy

