

Challenges in Developing Requirements for Al-based Systems: A Systems Engineering Perspective

Authors: Oluyinka Adedokun and Hanumanthrao Kannan

Introduction to AI-based Systems

- Al-based systems
 - Software and/or Hardware systems.
 - Data-centric
 - ✓ During development and/or deployment
 - Rule-based, algorithmic, heuristics, etc., to exhibit intelligence.
 - Several vague, quality attributes
 - ✓ Explainability, privacy, ethics, resilience, etc.

Characteristics of AI-based Systems

Requirements Engineering

Requirement engineering involves:

Challenges in building requirements for AI-based systems

Figure 1: Number of RE4AI issues as appeared in the literature. Source: Ahmad et al. 2023

Data requirements

Data-generation expense – Shin et al. (2019)

- Data availability and quality Weihrauch et al. (2018)
- Training and testing of data Nakamichi et al. (2020)
- Lack of structure and rules appropriate to train an AI system using the available data – Sandkuhl (2019).

Figure 2: Part of data-related AI requirements to be considered as proposed by Ahmad et al.(2023)

- Confusion in making important choices.
 - > Conflicting choices (positive or negative).
 - Cost implications, and impact of letting go of one of the choices.
- For example,
 - Trading privacy for transparency?

Emergence of new requirements

New requirements -

- > Data, ethics, trust, and transparency.
- Requires clear specifications for adequate integration into the current practices.

Requirements engineer responsibilities

Lack of capacity to handle large amounts of data.

Non-functional requirements (NFR)

Traditional SE NFR

- Challenges adapting to fit AI-based systems due to its unpredictable nature.
- Some NFRs might become less important in AI-based systems.
- > For example,
 - Fairness and transparency are very important in AI-based systems while compatibility and modularity now have little or no importance.

Machine learning vs Traditional Methods

Traditional SE

- Has a well-established RE process
- Outcomes of Traditional SE are mostly predictable
- Al-based systems
 - > Outcome can be unpredictable
 - Models require dataset training, and testing (Arpteg et al. 2018).

Requirement definitions

Vagueness of some attributes
Explainability, privacy, ethics, resilience, etc.
Lack of clarity in defining vague attributes
For example, how can we define fairness? How do we explain a term that has multiple meanings to an AI-based system?

Current Approaches

RE4AI

> GORE

> UML

SE4AI

Need approaches that can be scaled to AI-based systems, specifically in problem formulation.

 Gore-Oriented Requirement Engineering (GORE)

- Goal modeling and reasoning
 - ✓ Take humans to mars✓ Maintain speed
- Lacks semantics for action verbs
- Direct logical conflicts can be identified

✓ Implicit conflicts are challenging.

No explicit representation of design, and its traceability to goals

Current Approaches

✤ UML

- Easy to use
- >Not flexible to model NFR and
 - business rules

Summary

- We present the challenges of developing requirements based on existing literature.
- ✤ We found 9 most challenges as identified by various researchers.
- Current approaches to solving the challenges are also discussed with their limitations.
- Further studies will further use goal-oriented requirement engineering (GORE) and introduce requirement specifications for AI-based systems in addressing most of the identified challenges

Thank You!!!