The Value of Graphical Models for Quantifying Risk

Paul Britton (NASA) and Will Janzer (Bastion)

paul.t.britton@nasa.gov

william.o.Janzer@nasa.gov

Table of Contents

- Background and History
- General benefits
- Definitions
- Algebraic Calculation of Risk
- ► The Fundamentals of Various Graphical Representations of Risk
 - Reliability Block Diagrams
 - Event Sequence Diagrams
 - Event Trees
 - Fault Trees
 - Bayesian Networks
 - Influence Diagrams
- Summary

Background and History

- Block diagrams were introduced in the early 1920s at an ASME conference
- These methods of problem analysis would begin seeing use in industry in the 30s and 40s
- In 1947 ASME released Operation and Flow Process Charts standardizing the symbols required in these diagrams
- These methods evolved into block diagrams as we know them today and eventually fault trees
- In the 1960 the Nuclear industry began applying Probabilistic Risk Assessment to their plants in a similar way to how we use it today

General Benefits

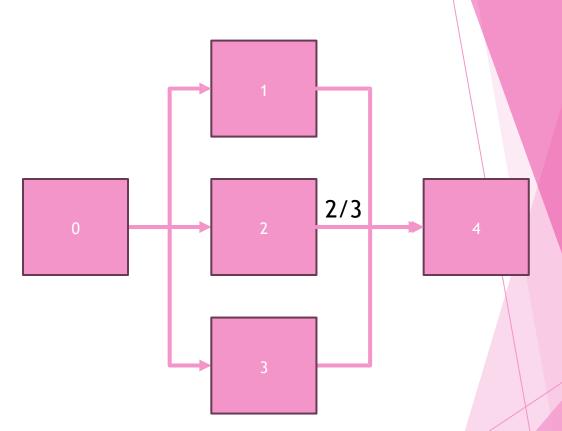
- Facilitate design influence at lower levels and make risk informed decisions prior to your mission
- Quantify risk with no top-level data
- Eliminate inefficient serial process flows from risk analysis via collaborative development and division of labor
- Useful way to communicate risk to others who might not be as well versed in the way risk is mapped and calculated
- Shows others how you are using their data (e.g. software, part reliability, structures etc.) in calculating risk to support a more transparent risk management approach

Definitions

- Reliability is the probability that component or system will perform its intended function adequately for a specified duration in a specified environment
- Unreliability or Failure Probability is the probability that component or system fails to perform its intended function adequately for a specified duration in a specified environment
- Notational Conventions
 - ▶ The reliability of components 1 and 2 are called R1 and R2
 - ▶ The failure probabilities of components 1 and 2 are called Q1 and Q2
 - > The reliability and unreliability of a system are called Rs and Qs
- Basic result: From the Axioms of a Probability Space, R + Q = 1

Algebraic Calculation of Risk

Reliability and Unreliability of two component systems


- Series Reliability / Risk Or-gate / 2 of 2 Success Criteria
 - ► Rs = R1*R2
- Parallel Reliability / Risk And-gate / 1 of 2 Success Criteria
 - ► Qs = Q1*Q2
- System Failure Probability of like component redundant systems (with M of N Success Criteria)
 - $Q_s = \sigma_{k=0}^{M-1} {N \choose k} R^k Q^{(N-k)}$
- System Equations
 - System Reliability: An equation for Rs that is consistent with the failure logic of the system that is derived from system objectives and design schematics
 - System Failure Probability: An equation for Qs that is consistent with the failure logic of the system that is derived from system objectives and design schematics
 - System Equations are derived with the aid of Graphical Models

The Fundamentals of Various Graphical Representations of Risk

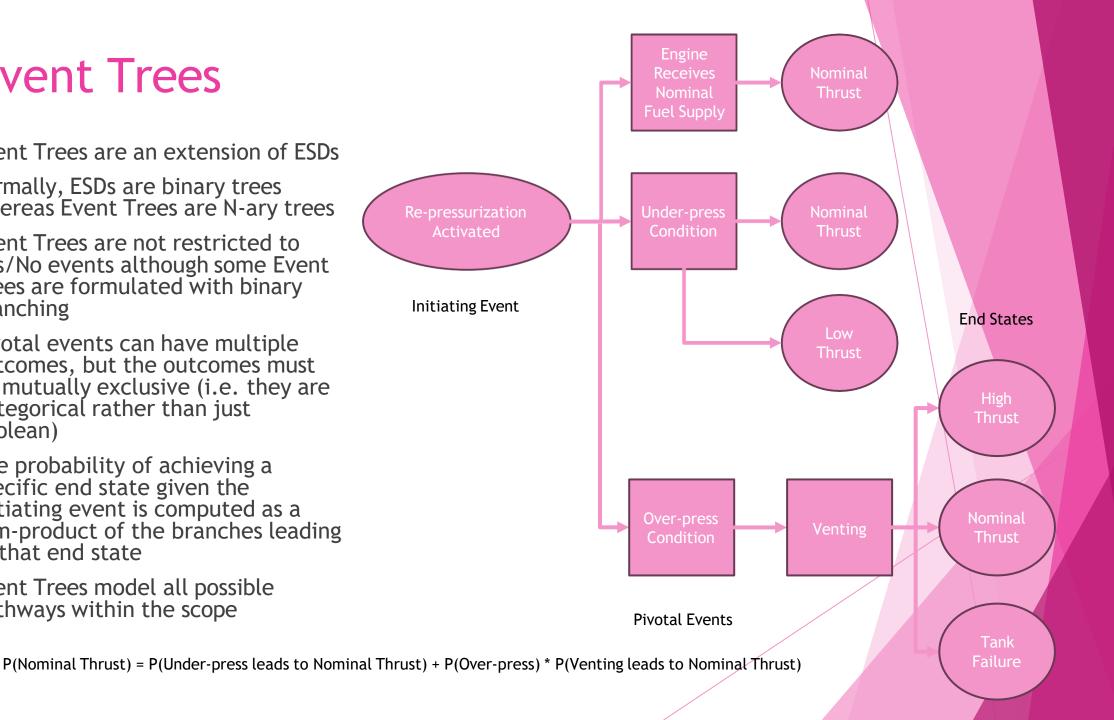
- Reliability Block Diagrams
- Event Sequence Diagrams
- Event Trees
- Fault Trees
- Bayesian Networks
- Influence Diagrams

Reliability Block Diagrams

- Reliability Block Diagrams depict component reliability and redundancy relationships throughout and with a system
- Their main use is to aid with computing system reliability

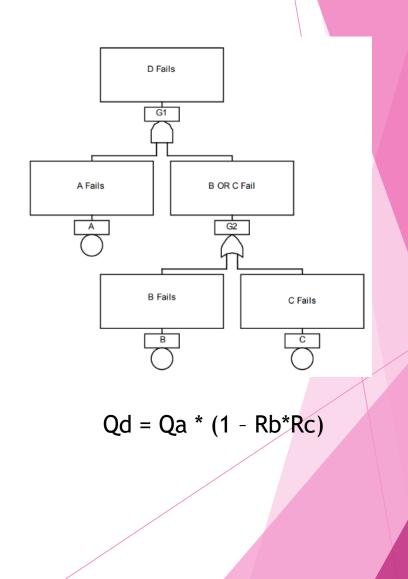
Rs = R0 * R2/3 * R4 = R0 * (Q1^3 + 3*R1*Q1^2) * R4

assuming components 1, 2, and 3 are like components

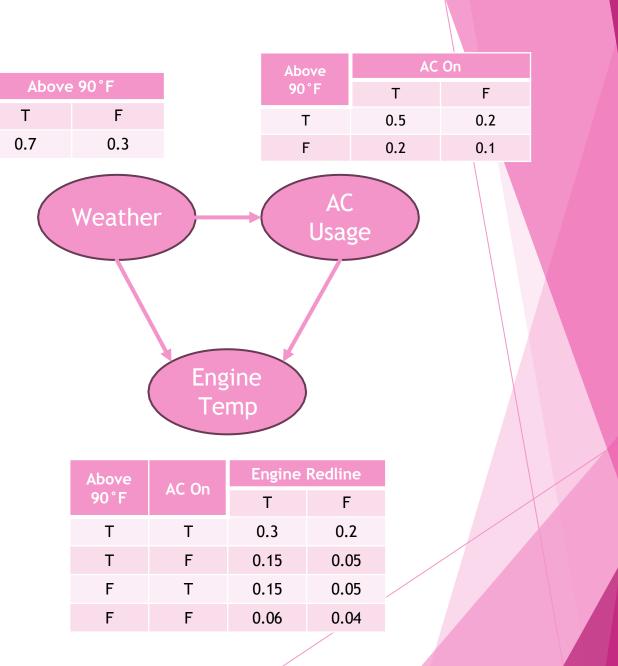

Event Sequence Diagram (ESD)

- Bottom-up approach
- "Yes" will always lead right and "No" will always lead down
- ESDs represent a chain of Boolean Events or even a tree of Boolean Events
- The initiating event and end states are circles, and the pivotal events are diamonds
- In this example:
 - ► IE = Drive to Store
 - E1 = Wreck Given IE
 - E2 = Air Bag Fails Given E1
 - P(OK) + P(< OK) + P(Not OK) = 1</p>
- ESDs are simple yet flexible since they allow multiple end states

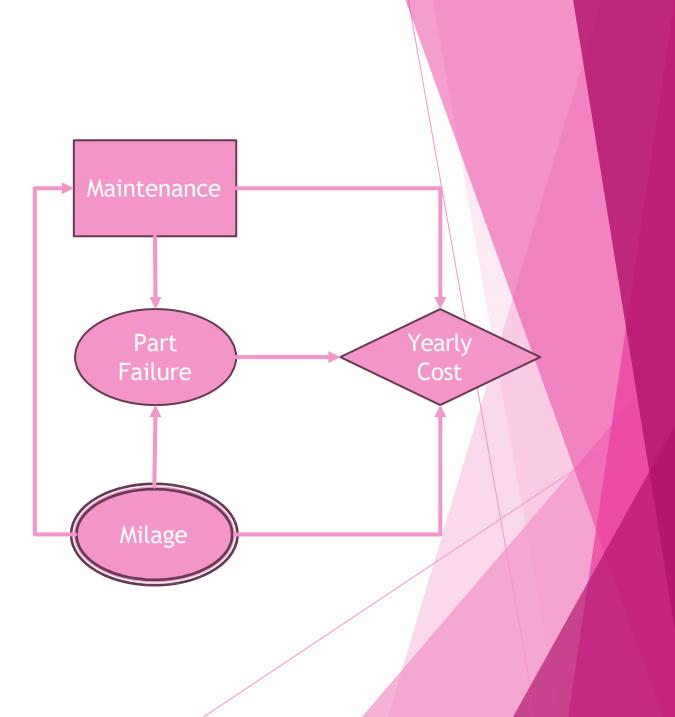
Not IE **F**2 **E1** OK OK P(OK) = 1 - E1P(< OK) = E1 * (1 - E2)P(Not OK) = E1 * E2


Event Trees

- Event Trees are an extension of ESDs
- Formally, ESDs are binary trees whereas Event Trees are N-ary trees
- Event Trees are not restricted to Yes/No events although some Event Trees are formulated with binary branching
- Pivotal events can have multiple outcomes, but the outcomes must be mutually exclusive (i.e. they are Categorical rather than just Boolean)
- The probability of achieving a specific end state given the initiating event is computed as a sum-product of the branches leading to that end state
- Event Trees model all possible pathways within the scope


Fault Trees

- Top-down approach. End event is undesired with sub events being failures that lead there.
- Gates are used to represent Boolean logic
- And = 🗋
- ▶ Or = 🏠
- Not, XOR and M/N Gates are also used
- Each basic event (circles) has an associated failure rate or failure probability
- You can solve any individual gate for the failure probability of that specific part of the system
- Allows easy integration of uncertainty calculations to impact results in an informative way.
- Fault Trees are useful throughout the design process


Bayesian Networks

- Probabilistic model depicting random variables and their conditional dependencies
- Mathematically they are directed acyclic graphs
- A pair of nodes where there is no path connecting them are conditionally independent
- Note: In this example, all three variables are Boolean, but they can be discrete or continuous variables

Influence Diagrams

- Mathematically, influence diagrams are also directed acyclic graphs
- Four main node types:
 - Ovals are uncertain
 - Double ovals are deterministic
 - Rectangles are decisions
 - Diamonds are output values
- Decision nodes represent control variables that can be adjusted to affect the output values
- Once programmed into a spreadsheet or script language, algorithms like Newtons Method can be used to optimize the output values

Summary

- Graphical quantifications of risk are a developmental tool that create and encourage a deeper understanding of a systems risk prior to having any hard test data on the system or its components
- They can and should be used throughout the design process to assess and communicate system risk
- Risk models get more accurate and more complex as a system goes through its design process which is why graphical representation can be beneficial for communication

Source links

- nasa.sharepoint.com/teams/HLSSMARMPRA/Shared Documents/Forms/AllItems.aspx?id=%2Fteams%2FHLSSMARMPRA%2FShared Documents%2FTraining%2FPRA Guide_NASA%2Epdf&parent=%2Fteams%2FHLSSMARMPRA%2FShared Documents%2FTraining
- NUREG-0492, "Fault Tree Handbook". (nrc.gov)
- #1 ASME standard; operation and flow process charts, 1947 Full View | HathiTrust Digital Library
- NUREG/KM-0010, "WASH-1400 The Reactor Safety Study The Introduction of Risk Assessment to the Regulation of Nuclear Reactors." (nrc.gov)
- Boolean algebra Wikipedia
- Flowchart Wikipedia

Backup

Basic Risk Modeling Concepts

Boolean Algebra

Most graphical models are just visual ways of presenting Boolean algebra. Simple Boolean algebra, for our purposes, is AND and OR.

AND

- ► Notation: x∧y
- Definition: $x \land y = 1$ if x = y = 1, $x \land y = 0$ otherwise
- Multiplication

► OR

- ► Notation: x∨y
- **b** Definition: $x \lor y = 0$ if x = y = 0, $x \lor y = 1$ otherwise
- Addition
- Cutsets
 - The divisions of events in sequence that result in the undesired end state.