NTUTIVE®

Rapid Reliability Risk Software Tools and 11/06/25

MISSION READY SOFTWARE

INTUITIVE[®], IT'S...INTUITIVE[®], and our lighthouse logo are all Registered Trademarks of Intuitive Research and Technology Corporation. © 2022 Intuitive Research and Technology Corporation. All Rights Reserved.

About the speakers and agenda

• Presenters:

- Matthew McCarrell is a Model-Based Systems Engineer (MBSE) at INTUITIVE within their MBSE Team
- Ann Marie Neufelder is the Founder of Mission Ready Software and an expert in Software FMEAs
- Agenda
 - o Introduction
 - o Overview
 - Background on FMEAs and MBSE
 - State Management Failure Mode Example
 - Error Handling Failure Mode Example
 - How the script works
 - o Summary

Overview

- Software FMEAs are critical in reducing the likelihood of an undesired outcome. But only if they are executed before the code is complete.
- Ineffective analysis strategies have focused on the least likely failure modes and root causes and are too detailed to be completed in time to affect design.
- Effective software FMEAs start with what has historically gone wrong in the past the common defect enumerations (CDEs).
- Some required inputs for the software FMEA development are captured within an MBSE model.
- Extracting that data in an automated fashion expedites the analysis and mitigation back into the model.
- A script can analyze MBSE model views to generate CDEs

17 Common Mistakes when conducting a software FMEA

Organizational mistakes

- None of the software FMEA analysts have a background in software
- The analysis is not constructed by a cross-functional team
- Conducting the SFMEA too late (most of these failure modes are too expensive to fix once the code is written)
- Conducting the SFMEA without the proper software deliverables such as the SRS, SDD, IRS, etc.
- Failing to track the failure modes and/or make any corrective actions to the requirements, design, code, use case, users manual as a result of the SFMEA
- Failing to tailor the software FMEA to the highest risk areas and most relevant failure modes

Copyright Mission Ready Software, 2024

Faulty Assumptions

- Assumption that all failures originate in a single line of code or specification
- Assumption that software works
- Assumption that software specifications are correct and complete
- Assumption that all failure modes will be found and fixed in testing
- Assumption that all failure modes are impossible or negligible in severity

MBSE/FMEA integration addresses 9 of the 17 mistakes people make when conducting a software FMEA (bolded items)

FMEA Execution mistakes

- Focusing on total failure of the software - failing to consider small things that lead to big things going wrong
- Black box versus functional approach – analyze what the software does and not what it is
- Ignoring the 6 dimensions that lead to software failures - the system, the users who use the system, the battlefield environment, and the mission
- Conducting the SFMEA at too high (system requirements) or too low (lines of code) a level or architecture
- Mixing functional failure modes with process failure modes (i.e. fault timing means the software design not the software schedule)
- Incorrectly assigning a failure rate or likelihood

What is MBSE?

Digital Engineering (DE) is the use of digital artifacts, digital environment, and digital tools in the performance of engineering functions.

Model-Based Engineering (MBE) is an approach to engineering that uses models as an integral part of the technical baseline that includes the requirements, analysis, design, and verification of a capability, system or product throughout the acquisition lifecycle.

MBSE is a critical incorporation within Digital Engineering

INTUITIVE

INTUITIVE®

MBSE System Information Views

MBSE System Information Views

- Behavior
 - Mission and Stakeholder Requirements
 - System Functional Architecture
 - System States and Modes
 - Functional Allocations
- Structure
 - System Logical and Physical Architectures
 - External and Internal Interfaces and Definitions
- Requirement
 - System Requirements Definition
 - System Traceability Matrices
 - Verification Requirements
- Parametric
 - Trade studies
 - Performance and design analysis
 calculations

Generating CDEs from Model Views

Failure Modes with associated diagrams

State Management (SM) - State Machine Diagram (STM)

<u>Error Handling (EH)</u> – Generic Table or Block Definition Diagram (BDD)

<u>Timing (T)</u> – Sequence (SE) or State Machine Diagrams (STM)

Sequence (SE) – Sequence (SD) or Activity Diagrams (ACT)

Data Definition (DD) – Generic Table or Block Definition Diagram (BDD)

<u>Functionality (F)</u> – Generic Table or Activity Diagrams (ACT)

Usability (U) - Generic Table or Activity Diagrams (ACT)

<u>Processing (PR)</u> – Not relevant for MBSE

<u>Algorithm (A)</u> – Not relevant for MBSE

Machine Learning (ML) – Not relevant for MBSE

Example: A traffic light

	Red	Amber	Green
Red	red_timer_expires = false	Prohibited	red_timer_expires = true
Amber	Amber_timer_expires = true	Amber_timer_expires = false	Prohibited
Green	Prohibited	Green_timer_expires = true	Green_timer_expires = false

These CDEs are auto-added to the Excel FMEA worksheet by the script:

Failure Mode Key:

- TL-SM-1 Prohibited transition is allowed
- TL-SM-2 Conditionally prohibited transition allowed
- TL-SM-3 Stuck state (fails to transition)
- TL-SM-4 Loss of power while in a state
- TL-SM-5 User abort while in this state

Prohibited transitions, stuck states, loss of power and user abort are rarely tested. The code can do any of these regardless of what the state design says. The effects of a prohibited transition can be different so each must be added to a different row on the SFMEA as shown next.

INTUITIVE®

State Management Failure Mode Generation

Overall Methodology for the SM Failure Mode

Skip Step 1 and Step 2 if they are already in the model

Step 1: Incorporate Requirements into an MBSE Model

Step 2: Develop a State Machine-Diagram with an MBSE Model

Step: 3 Generate a State Machine Table in an MBSE Model

o Output to Excel

Step 4: Autogenerate SFMEA from SFMEA Tool using script and an Excel output from MBSE Model

Proof of Concept Example

Step 2: Build a State Machine

Step 3: Generate State Machine Table

 Legend
 start

 ✓ Transition
 start

 Ø Activation device
 Ø

 ● Activation device
 Ø

 ● Avetter
 Ø

 ● PLASHING RED
 Ø

 ● Start
 Ø

 ● Start
 Ø

	A	В	С	D	E	F	G	Н
1		Activation device	AMBER	FLASHING RED	GREEN	RED	Start	Vehicles
2	Activation device				->			
3	AMBER			->		->		
4	FLASHING RED					->		
5	GREEN		->	->				
6	RED			->	->			
7	Start					->		
8	Vehicles					->		

From the list of states and transitions, these rows are automatically added to the FMEA table from the script

TL-SM-1 – Prohibited transition allowed – Each of these is placed on its own row in the SFMEA table

- TL-SM-1 Red to amber transition allowed
- TL-SM-1 Amber to green transition allowed
- TL-SM-1 Green to red transition allowed

TL-SM-2 – Conditionally prohibited transitions are allowed – Each of these is placed on its own row in the SFMEA table

IISSION READY SOFTWAR

- TL-SM-2 Red to green transition allowed when the red_timer_expires = False
- TL-SM-2 Red to amber transition allowed when the amber_timer_expires = False
- TL-SM-2 Green to amber transition allowed when the green_timer_expires = False
- TL-SM-3 Stuck state Transition not made when conditions are met
 - TL-SM-3 Stuck in red when the red_timer_expires = true
 - TL-SM-3 Stuck in amber when the amber_timer_expires = true
 - TL-SM-3 Stuck in green when the green_timer_expires = true
- TL-SM-4 Software in an unknown state after loss of power while in a state
 - TL-SM-4 Software is in an unknown state when there is a loss of power while in red state
 - TL-SM-4 Software is in an unknown state when there is a loss of power while in amber state
 - TL-SM-4 Software is in an unknown state when there is a loss of power while in green state
- TL-SM-5 Software in unknown state after user abort Note that there is no user abort, but the user will identify that when they do the analysis.
 - TL-SM-5 Software is in an unknown state when aborted while in red state
 - TL-SM-5 Software is in an unknown state when aborted while in amber state
 - TL-SM-5 Software is in an unknown state when aborted while in green state

From the list of states and transitions, these rows are automatically added to the FMEA table from the script

- The multifunctional team now has the first 3 columns of the FMEA filled out
- They work from left to right to analyze the effects, controls, likelihood, RPN, compensating provisions and recommended corrective actions
- Likelihood is assessed based on objective evidence
 - Existence Does the specification specify the behavior if this failure mode and root cause happens? If yes, likelihood is low, otherwise high.
 - Manifestation Is this a single or multiple point failure? Single point failure high, multiple point failure low
 - Control How many independent controls that don't require user intervention? 2 Low, 1 Medium, 0 High
 - Detectability Is there a written test procedure for this specific failure mode and root cause? Yes Low, No High
 - Average likelihood is average of above 4 scores converted to a numerical ranking
 - RPN = severity x average likelihood
 - Compensating provisions Things that users might do to prevent the hazard
 - Recommended corrective actions Adding specifications, changing specifications, changing the design, modifying the code for the new design or specification, writing test procedures for this failure mode and root

CDE	Failure	Root Cause	Local	System	Recommended	Preventive measures	Existence	Manifestation	Control	Detectability	Average	RPN	Compensation	Recommended
	Mode		effect	effect	Severity		Likelihood	Likelihood	likelihood	likelihood	Likelihood		provisions	corrective actions
TL-SM-1	Prohibited	TL-SM-1	What	What does	See the PHA or	Unless there are design	Does the	Single point –	No controls –	There is a	Average of		Can users do	Changing or adding
	transition is	Green to	does the	the system	FDSC for severity	controls to prevent the a	specification	High	high	written test	these 4		anything to	specifications,
	allowed	red	software	do?	level	transition between two	explicitly say	Double point –	1 control –	procedure for	assessments		prevent hazard?	design, code and
		transition	do?			prohibited states, none.	that the	Medium	medium	this specific	converted to			test procedures to
		allowed					transition is	Triple point -	2 controls - low	CDE – Low	a number			address this root
							prohibited?	Low		Otherwise -	with same			cause
							If explicit			High	range as			
							then				severity			
							medium if							
							implicit then							
							high							

Example: A traffic light components

Hardware components include the following, which are usually on a hardware schematic, system architecture diagram and/or parts list

- Light
 - Traffic light housing
 - Red light bulb
 - Green light bulb
 - Amber light bulb
- Equipment cabinet at intersection
 - Controller
 - Power supply
 - Phase selector controller
 - Detector amp
 - Battery
- Inductive loop vehicle sensor

Software components include the following which are usually identified on the system architecture diagram, software architecture diagram

- Controller software
- Vehicle sensor software
- ASCT Adaptive Systems Control (machine learning software remotely located). Optimizes traffic flow.

Error Handling Failure Mode Generation

2 312

3 312

4 312

\$ 312

6 313

7 313

\$ 314

9 115

10 3 1 5 1

Overall Methodology for the EH Failure Mode

Step 1: Incorporate Hardware parts into an MBSE Model

Step 2: Develop a Block Definition Diagram with an MBSE Model

Step: 3 Generate a Filled Generic Table in an MBSE Model

Output to Excel

Step 4: Autogenerate SFMEA from SFMEA Tool using script and an Excel output from MBSE Model

Step 1: Incorporate Hardware Parts

The missle shall meet performance requirements during and/or after exposure to any combination of

Vene

5 General

III Trajectory Accurac

Si Vertical Displacement

B Horizontal Deplecement

Contrast Sector Assess

O W14 Defivments

3 Varient Pervicus Place

II Minimum Safe Securation Re-

IT Makes an and Maximum Tax

3 Maximum Target Range

Step 3: Generate Filled Generic Table

#	Name	Owner
1	A/C Condenser	Front End
2	Axles	Chassis
3	Batteries	Chassis
4	🔜 Bed	Truck
5	Bumpers	Bed Sed
6	🔲 Cabin	Truck
7	Chassis	Truck

Hardware

#	Name	Owner
1	A/C Condenser	Front End
2	Axles	Chassis
3	Batteries	Chassis
4	Bed	Truck
5	Bumpers	Bed
6	Cabin	Truck
7	Chassis	Truck

FAILURE MODES & EFFECTS ANALYSIS

Proof of Concept Example

Classification

Verify by Inspectio

Verify by Demotstration

INTUITIVE

INTUITIVE®

System Model Accessibility

<u>What you need to know in the</u> <u>model</u>

- Most of the time you can skip step 1 and 2
- In step 3 you would pull the information out of the model but to do that you need a generic table
- A generic table would have 4 main components:
 - Element Type
 - Scope
 - Columns
 - Export
- Pulling Information from the model is very easy

Auto generating software FMEA rows

With the list of hardware components, software components and communication sources these CDEs are auto generated by the scripts

For each of the below CDEs, one row is created for each hardware element

- TL-EH-1 Software fails to detect faulted hardware
- TL-EH-2 Software detects faulted hardware but executes the wrong recovery
- TL-EH-22 Software fails to detect faults that have been resolved
- TL-EH-23 Software is overly sensitive to faults- one row created for every hardware fault

For each of the below CDEs, one row is created for each software component

- TL-EH-29 The software fails to detect that another software component that is not or has stopped executing
- TL-EH-30 The software fails to properly handle and recover from another software component that is not or has stopped executing

Brainstorming the rest of the software FMEA template

- The basic framework of the FMEA is now laid out
- A group of subject matter experts now completes the effects of these failure modes and root causes
 - The effects can be mission, safety, both or none
- They assume that the failure mode and root cause exist, and they identify any controls for that failure mode
 - If it is not controlled it will happen
- They update the test procedures to test for any failure mode/root causes
 - This increases the detectability and lowers the risk
- The scripts are designed not to overwrite any analysis that is done in between revisions of the state model

Summary

- Using MBSE to export out state design, and hardware and software component names ensures that the software engineers, system engineers, reliability and safety engineers focus on the failure modes that are most likely to happen
- It also ensures that they avoid several of the 17 mistakes related to software FMEAs
- The first 3 columns of the software FMEA are the columns that virtually all analysts don't do correctly. The MBSE/scripts ensure that the FMEA gets off on the right footing
- A multi-functional team is necessary to assess the effects once the framework is laid out

CDE	Failure Mode	Root Cause	Local effect	System effect	Recommended	Preventive	Existence	Manifestation	Control	Detectability	Average	RPN	Compensation	Corrective actions
					Severity	measures	Likelihood	Likelihood	likelihood	likelihood	Likelihood		provisions	made
TL-SM-1	Prohibited	TL-SM-1	The wrong	Drivers in	10		Guaranteed -	- Single point	Uncontrolled -	No test	10	100	The drivers in the	Rework design to
	transition is	Green to red	light is lit	cross section			10	failure - 10	10	procedure for			cross street can	check for previous
	allowed	transition		are at risk of						this failure			see them in the	light state before
		allowed		collision		None				mode - 10			middle of the	accepting a state
													intersection	transition to the
														next state

Wrap Up and Discussion

- Questions?
- Comments?
- Contact: Matthew McCarrell

Matthew.mccarrell@irtc-hq.com

Ann Marie Neufelder <u>ann.Neufelder@missionreadysoftware.com</u>

About Mission Ready Software

- Collecting actual software reliability data since 1993
 - Vehicle
 - Defense
 - Medical
 - Energy
 - Space/Aerospace
 - Semiconductor
 - Major electronics
- Developer of the only machine learning model that predicts software failures and failure mode likelihood before the code is written
- World's largest software reliability benchmarking study
- World's largest database of software failures
 - Almost 1 million software failures analyzed for root cause