
INTUIT IVE®, I T’S . . . INTUIT IVE®, and our l ighthouse logo are al l Regis tered
Trademarks of Intuit ive Research and Technology Corporation.
© 2022 Intuit ive Research and Technology Corporation. Al l R ights Reserved.

Rapid Reliability Risk Assessment Utilizing
 Software Tools and MBSE in RAM Engineering

1 1 / 0 6 / 2 5

About the speakers and agenda
• Presenters:

o Matthew McCarrell is a Model-Based Systems Engineer (MBSE) at INTUITIVE within their
MBSE Team

o Ann Marie Neufelder is the Founder of Mission Ready Software and an expert in Software
FMEAs

2

• Agenda
o Introduction
o Overview
o Background on FMEAs and MBSE
o State Management Failure Mode Example
o Error Handling Failure Mode Example
o How the script works
o Summary

Overview

3

Model Based System
Engineering

Reliability, Software, Systems
& Safety Engineering

Rapid Software Failure
Modes & Effects Analysis

• Software FMEAs are critical in reducing the likelihood
of an undesired outcome. But only if they are
executed before the code is complete.

• Ineffective analysis strategies have focused on the
least likely failure modes and root causes and are
too detailed to be completed in time to affect
design.

• Effective software FMEAs start with what has
historically gone wrong in the past – the common
defect enumerations (CDEs).

• Some required inputs for the software FMEA
development are captured within an MBSE model.

• Extracting that data in an automated fashion
expedites the analysis and mitigation back into the
model.

• A script can analyze MBSE model views to generate
CDEs

17 Common Mistakes when conducting a
software FMEA

Organizational mistakes
• None of the software FMEA

analysts have a background in
software

• The analysis is not constructed by
a cross-functional team

• Conducting the SFMEA too late
(most of these failure modes are
too expensive to fix once the
code is written)

• Conducting the SFMEA without
the proper software deliverables
such as the SRS, SDD, IRS, etc.

• Failing to track the failure modes
and/or make any corrective
actions to the requirements,
design, code, use case, users
manual as a result of the SFMEA

• Failing to tailor the software FMEA
to the highest risk areas and most
relevant failure modes

Faulty Assumptions
• Assumption that all failures

originate in a single line of
code or specification

• Assumption that software
works

• Assumption that software
specifications are correct
and complete

• Assumption that all failure
modes will be found and
fixed in testing

• Assumption that all failure
modes are impossible or
negligible in severity

FMEA Execution mistakes
• Focusing on total failure of the

software - failing to consider small
things that lead to big things going
wrong

• Black box versus functional
approach – analyze what the
software does and not what it is

• Ignoring the 6 dimensions that lead
to software failures - the system, the
users who use the system, the
battlefield environment, and the
mission

• Conducting the SFMEA at too high
(system requirements) or too low
(lines of code) a level or architecture

• Mixing functional failure modes with
process failure modes (i.e. fault
timing means the software design not
the software schedule)

• Incorrectly assigning a failure rate or
likelihood

MBSE/FMEA integration
addresses 9 of the 17 mistakes
people make when conducting
a software FMEA (bolded
items)

Copyright Mission Ready Software, 2024

Digital Engineering (DE) is the use of digital artifacts, digital environment, and digital
tools in the performance of engineering functions.

Model-Based Engineering (MBE) is an approach to engineering that uses models as
an integral part of the technical baseline that includes the requirements, analysis,
design, and verification of a capability, system or product throughout the acquisition
lifecycle.

Company Private 5

What is MBSE?

“All of this is
information
related to

the system”

MBSE is a critical incorporation within Digital Engineering

MBSE

Electrical
Engineer/Mechanical
Engineer

Software Engineer Software Engineer

Project Manager

Systems Engineer

Systems AdministratorProduction Engineer

System Safety
Engineer

System Safety
Analysis

Company Private 6

MBSE System Information Views
MBSE System Information Views

– Behavior
• Mission and Stakeholder Requirements
• System Functional Architecture
• System States and Modes
• Functional Allocations

– Structure
• System Logical and Physical Architectures
• External and Internal Interfaces and

Definitions
– Requirement

• System Requirements Definition
• System Traceability Matrices
• Verification Requirements

– Parametric
• Trade studies
• Performance and design analysis

calculations

Reference
DocumentReference

Document

System

Performance
Requirement

Performance
Requirement

Constraining
RequirementConstraining

Requirement

Cradle

ISSUE Verification

SBS

Trade Study

Analysis

Reference
DocumentReference

Document

System

Performance
Requirement

Performance
Requirement

Constraining
RequirementConstraining

Requirement

Cradle

ISSUE Verification

SBS

Trade Study

Analysis

Information-Model Repository
MBSE System Model

SRD

CDD

SDD

ICD

ConOps

Test
Cases

Review
Package

Analysis
Reports

MIL-STD-882 Artifacts

Safety
Reports

Hazard
Analysis
Reports

FMECA/FTA

Developed
using tools
that support
Systems
Modeling
Language
(SysML)

The MBSE System
Model is the
Authoritative

Source of Truth.

Failure Modes with associated diagrams
State Management (SM) – State Machine Diagram (STM)
Error Handling (EH) – Generic Table or Block Definition
Diagram (BDD)
Timing (T) – Sequence (SE) or State Machine Diagrams (STM)

Sequence (SE) – Sequence (SD) or Activity Diagrams (ACT)
Data Definition (DD) – Generic Table or Block Definition
Diagram (BDD)
Functionality (F) – Generic Table or Activity Diagrams (ACT)

Usability (U) – Generic Table or Activity Diagrams (ACT)
Processing (PR) – Not relevant for MBSE
Algorithm (A) – Not relevant for MBSE

Machine Learning (ML) – Not relevant for MBSE

Generating CDEs from Model Views

Example: A traffic light
Red Amber Green

Red red_timer_expires = false Prohibited red_timer_expires = true

Amber Amber_timer_expires = true Amber_timer_expires = false Prohibited

Green Prohibited Green_timer_expires = true Green_timer_expires = false

These CDEs are auto-added to the Excel FMEA worksheet by the script:

Failure Mode Key:
• TL-SM-1 Prohibited transition is allowed
• TL-SM-2 Conditionally prohibited transition allowed
• TL-SM-3 Stuck state (fails to transition)
• TL-SM-4 Loss of power while in a state
• TL-SM-5 User abort while in this state

Prohibited transitions, stuck states, loss of power and user abort are rarely tested. The code can
do any of these regardless of what the state design says. The effects of a prohibited transition
can be different so each must be added to a different row on the SFMEA as shown next.

State Management Failure Mode Generation
Step 1: Incorporate Requirements Step 2: Build a State Machine

Step 3: Generate State Machine Table

Proof of Concept Example
Overall Methodology for the SM
Failure Mode
Skip Step 1 and Step 2 if they are
already in the model
Step 1: Incorporate Requirements
into an MBSE Model

Step 2: Develop a State Machine
Diagram with an MBSE Model

Step: 3 Generate a State Machine
Table in an MBSE Model

o Output to Excel

Step 4: Autogenerate SFMEA from
SFMEA Tool using script and an
Excel output from MBSE Model

From the list of states and transitions, these rows are automatically
added to the FMEA table from the script
TL-SM-1 – Prohibited transition allowed – Each of these is placed on its own row in the SFMEA table

• TL-SM-1 Red to amber transition allowed
• TL-SM-1 Amber to green transition allowed
• TL-SM-1 Green to red transition allowed

TL-SM-2 – Conditionally prohibited transitions are allowed – Each of these is placed on its own row in the
SFMEA table

• TL-SM-2 Red to green transition allowed when the red_timer_expires = False
• TL-SM-2 Red to amber transition allowed when the amber_timer_expires = False
• TL-SM-2 Green to amber transition allowed when the green_timer_expires = False

TL-SM-3 – Stuck state – Transition not made when conditions are met
• TL-SM-3 Stuck in red when the red_timer_expires = true
• TL-SM-3 Stuck in amber when the amber_timer_expires = true
• TL-SM-3 Stuck in green when the green_timer_expires = true

TL-SM-4 – Software in an unknown state after loss of power while in a state
• TL-SM-4 Software is in an unknown state when there is a loss of power while in red state
• TL-SM-4 Software is in an unknown state when there is a loss of power while in amber state
• TL-SM-4 Software is in an unknown state when there is a loss of power while in green state

TL-SM-5 – Software in unknown state after user abort – Note that there is no user abort,
but the user will identify that when they do the analysis.

• TL-SM-5 Software is in an unknown state when aborted while in red state
• TL-SM-5 Software is in an unknown state when aborted while in amber state
• TL-SM-5 Software is in an unknown state when aborted while in green state

From the list of states and transitions, these rows are automatically
added to the FMEA table from the script

• The multifunctional team now has the first 3 columns of the FMEA filled out
• They work from left to right to analyze the effects, controls, likelihood, RPN, compensating

provisions and recommended corrective actions
• Likelihood is assessed based on objective evidence

• Existence – Does the specification specify the behavior if this failure mode and root cause happens? If yes,
likelihood is low, otherwise high.

• Manifestation – Is this a single or multiple point failure? Single point failure – high, multiple point failure - low
• Control – How many independent controls that don’t require user intervention? 2 - Low, 1 Medium, 0 - High
• Detectability – Is there a written test procedure for this specific failure mode and root cause? Yes – Low, No – High
• Average likelihood is average of above 4 scores converted to a numerical ranking
• RPN = severity x average likelihood
• Compensating provisions – Things that users might do to prevent the hazard
• Recommended corrective actions – Adding specifications, changing specifications, changing the design,

modifying the code for the new design or specification, writing test procedures for this failure mode and root
causeCDE Failure

Mode
Root Cause Local

effect
System
effect

Recommended
Severity

Preventive measures Existence
Likelihood

Manifestation
Likelihood

Control
likelihood

Detectability
likelihood

Average
Likelihood

RPN Compensation
provisions

Recommended
corrective actions

TL-SM-1 Prohibited
transition is
allowed

TL-SM-1
Green to
red
transition
allowed

What
does the
software
do?

What does
the system
do?

See the PHA or
FDSC for severity
level

Unless there are design
controls to prevent the a
transition between two
prohibited states, none.

Does the
specification
explicitly say
that the
transition is
prohibited?
If explicit
then
medium if
implicit then
high

Single point –
High
Double point –
Medium
Triple point -
Low

No controls –
high
1 control –
medium
2 controls - low

There is a
written test
procedure for
this specific
CDE – Low
Otherwise -
High

Average of
these 4
assessments
converted to
a number
with same
range as
severity

Can users do
anything to
prevent hazard?

Changing or adding
specifications,
design, code and
test procedures to
address this root
cause

Example: A traffic light components
Hardware components include the following, which are usually on a hardware
schematic, system architecture diagram and/or parts list

• Light
• Traffic light housing
• Red light bulb
• Green light bulb
• Amber light bulb

• Equipment cabinet at intersection
• Controller
• Power supply
• Phase selector controller
• Detector amp
• Battery

• Inductive loop vehicle sensor

Software components include the following which are usually identified on the
system architecture diagram, software architecture diagram

• Controller software
• Vehicle sensor software
• ASCT – Adaptive Systems Control (machine learning software remotely located). Optimizes traffic

flow.

Error Handling Failure Mode Generation
Step 1: Incorporate Hardware Parts Step 2: Build a Block Definition Diagram

Step 3: Generate Filled Generic Table

Proof of Concept Example
Overall Methodology for the EH
Failure Mode
Step 1: Incorporate Hardware
parts into an MBSE Model

Step 2: Develop a Block
Definition Diagram with an
MBSE Model

Step: 3 Generate a Filled
Generic Table in an MBSE
Model

o Output to Excel

Step 4: Autogenerate SFMEA
from SFMEA Tool using script
and an Excel output from MBSE
Model

System Model Accessibility
What you need to know in the
model
• Most of the time you can

skip step 1 and 2
• In step 3 you would pull the

information out of the model
but to do that you need a
generic table

• A generic table would have 4
main components:

• Element Type
• Scope
• Columns
• Export

• Pulling Information from the
model is very easy

Select what kind of
element you are pulling

Select where that element is
located in the model

Select which properties of the
element you want to be shown

Press this button to export
your table to a excel sheet

Auto generating software FMEA rows
With the list of hardware components, software components and communication
sources these CDEs are auto generated by the scripts
For each of the below CDEs, one row is created for each hardware element

• TL-EH-1 Software fails to detect faulted hardware
• TL-EH-2 Software detects faulted hardware but executes the wrong recovery
• TL-EH-22 Software fails to detect faults that have been resolved
• TL-EH-23 Software is overly sensitive to faults– one row created for every hardware fault

For each of the below CDEs, one row is created for each software component
• TL-EH-29 The software fails to detect that another software component that is not or has stopped executing
• TL-EH-30 The software fails to properly handle and recover from another software component that is not or

has stopped executing

Brainstorming the rest of the software FMEA template

• The basic framework of the FMEA is now laid out
• A group of subject matter experts now completes the effects of

these failure modes and root causes
• The effects can be mission, safety, both or none

• They assume that the failure mode and root cause exist, and they
identify any controls for that failure mode
• If it is not controlled it will happen

• They update the test procedures to test for any failure mode/root
causes
• This increases the detectability and lowers the risk

• The scripts are designed not to overwrite any analysis that is done in
between revisions of the state model

Summary

Company Private 17

• Using MBSE to export out state design, and hardware and software component names
ensures that the software engineers, system engineers, reliability and safety engineers
focus on the failure modes that are most likely to happen

• It also ensures that they avoid several of the 17 mistakes related to software FMEAs

• The first 3 columns of the software FMEA are the columns that virtually all analysts don’t
do correctly. The MBSE/scripts ensure that the FMEA gets off on the right footing

• A multi-functional team is necessary to assess the effects once the framework is laid out

CDE Failure Mode Root Cause Local effect System effect Recommended
Severity

Preventive
measures

Existence
Likelihood

Manifestation
Likelihood

Control
likelihood

Detectability
likelihood

Average
Likelihood

RPN Compensation
provisions

Corrective actions
made

TL-SM-1 Prohibited
transition is
allowed

TL-SM-1
Green to red
transition
allowed

The wrong
light is lit

Drivers in
cross section
are at risk of
collision

10

None

Guaranteed -
10

Single point
failure - 10

Uncontrolled -
10

No test
procedure for
this failure
mode - 10

10 100 The drivers in the
cross street can
see them in the
middle of the
intersection

Rework design to
check for previous
light state before
accepting a state
transition to the
next state

18

Wrap Up and Discussion

• Questions?
• Comments?
• Contact: Matthew McCarrell

Matthew.mccarrell@irtc-hq.com

Ann Marie Neufelder
ann.Neufelder@missionreadysoftware.com

mailto:Matthew.mccarrell@irtc-hq.com
mailto:ann.neufelder@missionreadysoftware.com

Copyright Mission Ready Software 2023. This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
19

About
Mission
Ready
Software

• Collecting actual software reliability data
since 1993

• Vehicle
• Defense
• Medical
• Energy
• Space/Aerospace
• Semiconductor
• Major electronics

• Developer of the only machine learning
model that predicts software failures and
failure mode likelihood before the code is
written

• World’s largest software reliability
benchmarking study

• World’s largest database of software
failures

• Almost 1 million software failures analyzed
for root cause

19

	Slide Number 1
	About the speakers and agenda
	Overview
	17 Common Mistakes when conducting a software FMEA
	What is MBSE?
	MBSE System Information Views
	Generating CDEs from Model Views
	Example: A traffic light
	State Management Failure Mode Generation
	From the list of states and transitions, these rows are automatically added to the FMEA table from the script
	From the list of states and transitions, these rows are automatically added to the FMEA table from the script
	Example: A traffic light components
	Error Handling Failure Mode Generation
	System Model Accessibility
	Auto generating software FMEA rows
	Brainstorming the rest of the software FMEA template
	Summary
	Wrap Up and Discussion
	About Mission Ready Software

