
Agile and Reliable 
Software

Ann Marie Neufelder

ann.neufelder@missionreadysoftware.com

321-514-4659

mailto:ann.neufelder@missionreadysoftware.com


Problem to be solved

Reliable software tasks work whether the life cycle model is Waterfall, Agile or any other 
incremental model.
• Prediction models
• Failure tracking and trending
• Software FMEAs
• Reliable software testing
This presentation will show 
• Where the reliable software tasks fit in with the DoD’s Agile framework 
• How Agile development correlates to reliable software.



Software intensive pathway

This presentation 
illustrates how 

RAM fits into the 
pathway



Software intensive pathway with RAM tasks

Conduct reliable 
Software risk 
assessment 

Initial 
software 
reliability 
predictions /sensitive analysis
(from baseline information)

Top level SFMEA (initial)

See next slide for 
How reliable SW 
fits into each increment



Software intensive pathway with iterative RAM

Collect failure data, 
SW reliability evaluations
Reliability driven testing, 
Inject faults from SFMEA

Software 
FMEA

Software 
reliability 
Predictions/
sensitivity analysis

Software 
FMEA

Updated
software 
reliability 
predictions

Updated
software 
FMEA

Reliability 
driven 
testing, 
Collect failure data,
SW reliability 
evaluations



The statistics show that certain agile development factors 
are correlated to the success of the software intensive 

system[1]

6

Factor Successful Mediocre Distressed
Average defect density in operation in terms of defects per normalized size 0.063 0.36 1.51
Cycle time in years between feature releases 0.41 1.04 3.25
Schedule granularity for each software engineer is in days or weeks 67% 53% 19%

The longest activity of any development increment is the requirements and design 60% 46% 11%
The software group executes the best life cycle model for this project 90% 59% 20%
The software group proactively involves and seeks the approval of the stakeholders 77% 68% 25%
Every software engineer understands/has been trained on the life cycle model being 
executed 83% 53% 17%
This is a relatively small/incremental/spiral release (< 10% of existing code changed 
or added) 27% 7% 0%
Stakeholders/customers are involved in deriving and reviewing the software 
requirements. 77% 76% 69%
The design is prototyped 69% 39% 19%
The software testers get involved early in development 79% 17% 0%
There are regular reviews between systems testers and software management 100% 60% 0%



Risks that aren’t necessarily mitigated by Agile

• Low test coverage or level of rigor in testing

• Not enough defects are fixed in each sprint - so they pile up to the next sprint

• Software engineers (SE) don’t have end user/industry knowledge

• SEs misunderstand the user stories (largely due to lack of end user experience)

• SEs skip design or aren’t good at it

• SEs don’t test software in real world environment

• SEs don’t do consistent unit testing against design or specifications

• SEs don’t consider all failure modes or scenarios

• SEs aren’t good at estimating how much work they can do in a sprint (which leads to late deliveries which is never good 
for reliability)

• Despite the fact that CD/CI was invented for this purpose- SEs don’t take advantage of data from each sprint so as to 
plan/replan the scope and effort for future sprints

• SEs sometimes tag “Agile” to anything they conveniently do or do not want to do

• SEs typically want development tasks to be “Agile” but reliability tasks to be “Waterfall”

7



Failure mode analysis, 
reliability predictions

Ideal versus real world relationship between reliability and software 
engineering

Waterfall As per IEEE 1633

Reliable SW tasks are 
supposed to be in line 
with development

What really happens

8

Code & Unit test

Deploy

System test

Concept
Requirements

Design

Fault injection test, 
reliability 

evaluations

Plan reliable SW tasks

Code & Unit test

Deploy

System test

Concept
Requirements

Design

In real world reliable SW tasks are done after 
project is already in trouble and no time to fix 
anything. Everyone is blind sided by poor 
reliability. 

Reliability 
Engineering (RAM) 

not involved in 
development or test

No reliable SW planning

Last minute 
FMEA, reliability 

estimations



Initial failure modes analysis
Initial reliable predictions, fault 
injection tests

Ideal versus real world relationship between reliability and software 
engineering

Agile development as per IEEE 1633

• Reliable SW tasks are supposed 
to be integrated with CD/CI

What really happens

9

Plan reliable SW tasks

Last minute 
FMEA, reliability 

estimations

 Reliable SW tasks are done after project is 
already in trouble and no time to fix 
anything. Everyone is blind sided by poor 
reliability. 

Plan
Design

Develop
Test

Deploy
Review Launch

Updated failure modes, 
reliable predictions, fault 
injection tests

Updated failure modes, 
reliable predictions, fault 
injection tests

Reliability 
Engineering 

(RAM) not 
involved in 

development or 
test

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

No reliable SW planning



Solutions

• Understand that software is doubling in size every 4 years
• Pretending that it will go away hasn’t worked

• RAM adds value by
• Understanding what the software does and what can go wrong
• Not waiting until Materiel release to present results – they won’t get addressed
• Developing an effective FDSC that is software-centric 
• Helping software engineering understand the FDSC and consider it in scoring
• Focusing on failure modes that are costly to fix if found late
• A good statement of work



References

[1] A.M. Neufelder, “The cold hard truth about reliable software edition 7”, 2024.


	Agile and Reliable Software��
	Problem to be solved
	Software intensive pathway
	Software intensive pathway with RAM tasks
	Software intensive pathway with iterative RAM
	The statistics show that certain agile development factors are correlated to the success of the software intensive system[1]
	Risks that aren’t necessarily mitigated by Agile
	Ideal versus real world relationship between reliability and software engineering
	Ideal versus real world relationship between reliability and software engineering
	Solutions
	References

