Application of Bayesian Inference for Increasing Rocket Engine Reliability and its Uncertainty Quantification

Presenter: Dani McDowell |**Co-Authors:** Shreyas Lakshmipuram Raghu

Advisor: Dr. L. Dale Thomas

November 7, 2024

Presentation Agenda

Introduction

Project Overview & Research Context

Research Team

Dani McDowell Industrial & Systems Engineering Graduate Researcher

Shreyas Lakshmipuram Raghu Aerospace Systems Engineering Ph.D. Candidate

L. Dale Thomas, Ph.D. CSIL Director, Professor & Eminent Scholar of Systems Engineering

RS-2 5 Affordability Project Overview

The RS-2 5 Engine Space Shuttle Main Engine

Space Launch Systems Core Stage Engines

Image Credits: NASA/SLS Media Resources

RS-2 5 Affordability Project Overview *Driving Forces of Cost*

RS-2 5 Affordability Project Overview *Research Strategies to Address Costs*

Background

Foundations of the Structural Margin Approach

Defining Failure Potential

Stress-Strength Interference

Deterministic Factors of Safety

*Common values are 1.4 for Ultimate Analysis, and 1.1 for Yield Analysis

Lusser's Method

Developing Safety Margins

- Accounts for inherent variation relative to material strength and applied stress measurements
- Focusses suitable based deviations on developing safety margins on standard

How Scatterbands of Stress and Strength Shall be Separated by a Reliability Boundary [1]

Uncertainty Quantification for AM

- Uncertainty quantification (UQ) is a tool used to characterize and evaluate uncertainties present in both physical systems and the computational tools used to model them
- Extensively used to understand Process-Structure-Property relationships for AM materials

Uncertainty Quantification

Usage of AI & Machine Learning Techniques

- Opportunity to learn more from experimental and training data
	- Possible integration with digital engineering tools and AM part production
	- Potential approach to enhancing performance and reliability

Methods

Probabilistic Approaches to Rocket Engine Development

Structural Margin Approach

 1.8

 $1.6 \frac{4}{5}$

 1.4

 $1.2 \pm$

 0.8

Develop Bilinear Stress-Strain Curves

Obtaining Stress Strain Curves

Finite Element Analysis

- A simple, 1D rod was selected as the finite element
- Incremental load application formulas are employed to obtain uniaxial tensile load responses
- **Assumptions:**
	- Bilinear constitutive stressstrain relationship
	- Constant fracture strain

Nominal Material Properties: Young's Modulus (E) Yield Stress (Sy) Strength (Su) Fracture Strain (ε_u)

Introducing Uncertainty

AM Reduction Parameters & The Noise Factor

- Random noise is applied to simulate realistic data variation
- Reduction parameters are employed to simulate material property degradation due to AM
	- $E = qE$
	- $S_y = bS_y$

The Bayesian Inference Module

Markov Chain Monte Carlo (MCMC) Simulation

- Data with applied uncertainty is treated as a prior distribution and used to initiate an MCMC using the Random Walk Metropolis Algorithm
- The MCMC relies on the principles of Bayes Theorem to develop posterior distributions for the Yield Factor and Modulus Ratio from this data

Developing Stress Strength Interference Plots

- MCMC data is used to calculate:
	- A Yield Margin
	- A Reliability Boundary
	- **Strength Distributions**
	- Allowable stress distributions are calculated based on traditional FOS values and formulations from Lusser's method

Removing the Potential for Failure

Important Formulations

Derived From Lusser's Method

- **Reliability Boundary** = $RB = S + d(6 STD_S)$
- **Yield Margin** = YM = $Sy d(5 STD_{Sv})$
	- d = correction factor based on sample size

Introduced in the Structural Margin Work

- **Margin Depth Variable** = MD = YM/RB
	- Used to assess potential failures
	- When **MD < 1**, a failure due to stressstrength overlap is expected
	- When **MD = 1**, no overlap is observed

Results & Discussion *Application to Aerospace Materials*

Application of the Structural Margin Approach

Material System Studied: Al-2024T6

- Al-Cu alloy, desirable for its high strength-to-weight ratio
- Common material used in the aerospace industry
- Suitable material for research in AM

Reduction Factors & Noise

- 64 possible combinations
- Example Shown: $a = 75\%$, $b = 90\%$, $c = 15\%$

FOS Based Stress Strength Interference Plot

Applied Stress: Strength: Sy FOS $S =$ $Su=Sy+0.03E(\epsilon_u - \frac{Sy}{F})$ **Ex: a=75%, b=90%, c=15%**

 $(RB = 1.16, YSR = 1.1, YM = 0.9533, MD = 0.8219)$

Structural Margin Based Stress Strength Interference Plot

Sets YM=RB **MD is always 1**

Applied Stress $Sy - d(5 STD_{Sy})$ **Strength** $\varepsilon =$ $E + d(6 STD_E)$ S=Eε $Su=Sy+0.03E(\epsilon_u - \frac{Sy}{F})$ **Ex: a=75%, b=90%, c=15%**

Results

FOS Approach **Structural Margin Approach**

Of the 64 cases studied, **50 resulted** in stress strength interference

- Higher failure potential
- Highlights inefficiencies of the FOS approach

For all 64 cases, **no stress strength interference** was observed

> • No failures due to the constrained MD value

Conclusion

Summary & Future Research

Impact

Our research supports the integration of digital engineering tools early in the design cycle to better inform decisions and promote system reliability

Future Research Efforts

AM Considerations

- Introduce more complex geometries
- Study the impact of fatigue and residual stress on engine performance

Additional Materials

- Expand the application of the Structural Margin Approach to promising materials
	- Inconel 718, Inconel 625, NASA-HR1, JBK-75
- Address material properties at elevated temperature conditions

Acknowledgements

- RS-25 Affordability Research Supported by the SLS Engines Office of Marshall Space Flight Center.
- Thank you to our advisor, Dr. L. Dale Thomas, and Dr. Gang Wang for their support and guidance!

(*Credits: NASA*)

References

1 R. Lusser, "Reliability through Safety Margins," Redstone Arsenal, 1958.

2 P. Ligrani, D. McDowell, S. Lakshmipuram Raghu, and L. D. Thomas, "Structural Margin Statistical Analysis: Effects of Reduction Factors and Statistical Noise on Performance Parameters.," International Journal of Statistics and Applications, vol. 14, no. No. 3, 2024, Sep. 2024, doi: 10.5923/j.statistics.20241403.01.

3 G. Wang, "Beam Damage Uncertainty Quantification using Guided Lamb Wave Responses," Journal of 12 Intelligent Material Systems and Structures, vol. 29, no. 3, pp. 323–334, Feb. 2018, doi: 10.1177/1045389X17704911.

4 R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications. Philadelphia, Pennsylvania (PA): Society for Industrial and Applied Mathematics (SIAM), 2014.

5 Z. Hu and S. Mahadevan, "Uncertainty Quantification in Prediction of Material Properties during Additive Manufacturing," Scripta Materialia, vol. 135, pp. 135– 140, Jul. 2017, doi: 10.1016/j.scriptamat.2016.10.014.

6 Z. Hu and S. Mahadevan, "Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities," The International Journal of Advanced Manufacturing Technology, vol. 93, no. 5–8, pp. 2855– 2874, Nov. 2017, doi: 10.1007/s00170-017-0703-5.

7 Z. Hu and S. Mahadevan, "Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing," Scripta Materialia, vol. 135, pp. 135– 140, Jul. 2017, doi: 10.1016/j.scriptamat.2016.10.014.

Thank You!

Any Questions?

Dani McDowell Industrial & Systems Engineering Graduate Research Assistant (GRA) **djm0052@uah.edu**

L. Dale Thomas, Ph.D. CSIL Director, Professor & Eminent Scholar of Systems Engineering **dale.thomas@uah.edu**

Gang Wang, Ph.D. Mechanical & Aerospace Engineering Associate Professor **gang.wang@uah.edu**